

规格书

1 节锂离子/锂聚合物电池保护 IC

1 节锂离子/锂聚合物电池保护 IC

目 录

1.	概述	4
2.	特点	4
3.	应用	4
4.	方框图	5
5.	订购信息	5
6.	封装、脚位及标记信息	6
7.	绝对最大额定值	6
8.	电气特性	7
9.	电池保护 IC 应用电路示例	8
10.	工作说明	9
10.1.	正常工作状态	9
10.2.	过充电状态	9
10.3.	过放电状态	9
10.4.	放电过流状态(放电过流检测功能和负载短路检测功能)	9
10.5.	充电过流状态	10
10.6.	向 0V 电池充电功能(允许)	10
11.	特性(典型数据)	11
12.	封装信息	14
12.1.	SOT-23-6 封装	14
13.	TAPE & REEL 信息	15
13.1.	Tape & Reel 信息SOT-23-6(样式一)	15
13.2.	Tape & Reel 信息SOT-23-6(样式二)	16
14	修订记录	17

1 节锂离子/锂聚合物电池保护 IC

注意:

- 1、本说明书中的内容,随着产品的改进,有可能不经过预告而更改。请客户及时到本公司网站下载更新 http://www.hycontek.com。
- 2、本规格书中的图形、应用电路等,因第三方工业所有权引发的问题,本公司不承担其责任。
- 3、本产品在单独应用的情况下,本公司保证它的性能、典型应用和功能符合说明书中的条件。当使用 在客户的产品或设备中,以上条件我们不作保证,建议客户做充分的评估和测试。
- 4、请注意输入电压、输出电压、负载电流的使用条件,使 IC 内的功耗不超过封装的容许功耗。对于 客户在超出说明书中规定额定值使用产品,即使是瞬间的使用,由此所造成的损失,本公司不承担 任何责任。
- 5、本产品虽内置防静电保护电路,但请不要施加超过保护电路性能的过大静电。
- 6、本规格书中的产品,未经书面许可,不可使用在要求高可靠性的电路中。例如健康医疗器械、防灾器械、车辆器械、车载器械及航空器械等对人体产生影响的器械或装置,不得作为其部件使用。
- 7、本公司一直致力于提高产品的质量和可靠度,但所有的半导体产品都有一定的失效概率,这些失效 概率可能会导致一些人身事故、火灾事故等。当设计产品时,请充分留意冗余设计并采用安全指标, 这样可以避免事故的发生。
- 8、本规格书中内容,未经本公司许可,严禁用于其它目的之转载或复制。

1 节锂离子/锂聚合物电池保护 IC

1. 概述

HY2110-HB,内置高精度电压检测电路和延迟电路,是用于单节锂离子/锂聚合物可再充电电池的保护 IC。

本 IC 适合于对 1 节锂离子/锂聚合物可再充电电池的过充电、过放电和过电流进行保护。

2. 特点

HY2110-HB 具备如下特点:

(1) 高精度电压检测电路

•	过充电检测电压	4.280V	精度±40mV
•	过充电释放电压	4.080V	精度±50mV
•	过放电检测电压	2.500V	精度±80mV
•	过放电释放电压	3.000V	精度±80mV
•	放电过流检测电压	150mV	精度±30mV
•	充电过流检测电压	-150mV	精度±50mV
•	负载短路检测电压	0.85V(固定)	精度±300mV

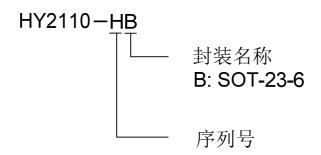
(2) 各延迟时间由内部电路设置(不需外接电容)

● 过充电检测延迟时间
● 过放电检测延迟时间
● 放电过流检测延迟时间
● 充电过流检测延迟时间
● 负载短路检测延迟时间
典型值 10ms
典型值 12ms
典型值 500μs

- (3) 过放自恢复功能:有
- (4) 低耗电流
 - 工作模式 典型值 3.0µA, 最大值 6.0µA (VDD=3.9V)
 - 过放电时耗电流 典型值 2.0µA, 最大值 3.0µA (VDD=2.0V)
- (5) 连接充电器的端子采用高耐压设计(CS 端子和 OC 端子,绝对最大额定值是 20V)
- (6) 向 OV 电池充电功能: 允许
- (7) 宽工作温度范围: -40℃~+85℃
- (8) 小型封装: SOT-23-6
- (9) 无卤素绿色环保产品

3. 应用

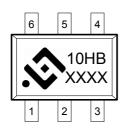
- 1节锂离子可再充电电池组
- 1 节锂聚合物可再充电电池组



4. 方框图

5. 订购信息

● 产品名称定义



1 节锂离子/锂聚合物电池保护 IC

6. 封装、脚位及标记信息

脚位	符号	说明
1	OD	放电控制用 MOSFET 门极连接端子
2	CS	过电流检测输入端子,充电器检测端子
3	OC	充电控制用 MOSFET 门极连接端子
4	NC	无连接
5	VDD	电源端,正电源输入端子
6	VSS	接地端,负电源输入端子

10: 产品名称

HB:产品序列号及封装名称

XXXX: 生产识别码

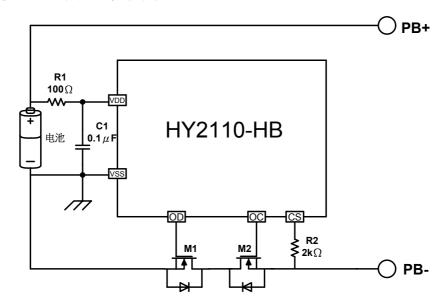
7. 绝对最大额定值

(VSS=0V, Ta=25℃, 除非特别说明)

项目	符号	规格	单位
VDD 和 VSS 之间输入电压	V_{DD}	VSS-0.3~VSS+10	V
OC 输出端子电压	V _{oc}	VDD-20~VDD+0.3	V
OD 输出端子电压	V _{OD}	VSS-0.3~VDD+0.3	V
CS 输入端子电压	V _{CS}	VDD-20~VDD+0.3	V
工作温度范围	T _{OP}	-40~+85	$^{\circ}\!\mathbb{C}$
储存温度范围	T _{ST}	-40~+125	$^{\circ}$
容许功耗	P _D	250	mW

1 节锂离子/锂聚合物电池保护 IC

8. 电气特性


(VSS=0V, Ta=25℃, 除非特别说明)

项目	符号	条件	最小值	典型值	最大值	单位
		输入电压				
VDD-VSS 工作电压	V_{DSOP1}	-	1.5	-	8	V
VDD-CS 工作电压	V_{DSOP2}	-	1.5	-	20	V
		耗电流				
工作电流	I_{DD}	VDD=3.9V	-	3.0	6.0	μA
过放电时耗电流	I_{PD}	VDD=2.0V	-	2.0	3.0	μA
		检测电压				
过充电检测电压	V		4.240	4.280	4.320	V
20元 电位则 电压	V_{CU}	-5℃~55℃ (*1)	4.230	4.280	4.330	V
过充电释放电压	V_{CR}		4.030	4.080	4.130	V
过放电检测电压	V_{DL}		2.420	2.500	2.580	V
过放电释放电压	V_{DR}		2.920	3.000	3.080	V
放电过流检测电压	V_{DIP}	V _{DD} =3.6V	120	150	180	mV
充电过流检测电压	V_{CIP}	V _{DD} =3.6V	-200	-150	-100	mV
负载短路检测电压	V_{SIP}	V _{DD} =3.0V	0.55	0.85	1.15	V
		延迟时间				
过充电检测延迟时间	T_OC	V_{DD} =3.9V \rightarrow 4.5V	50	100	150	ms
过放电检测延迟时间	T_OD	V_{DD} =3.6V \rightarrow 2.0V	10	25	40	ms
放电过流检测延迟时间	T_DIP	V _{DD} =3.6V	5	10	15	ms
充电过流检测延迟时间	T_{CIP}	V _{DD} =3.6V	6	12	18	ms
负载短路检测延迟时间	T_{SIP}	V _{DD} =3.0V	-	500	700	μs
		控制端子输出电压				
OD 端子输出高电压	V_{DH}		VDD-0.1	VDD-0.02	-	V
OD 端子输出低电压	V_{DL}		-	0.1	0.5	V
OC 端子输出高电压	V_{CH}		VDD-0.1	VDD-0.02	-	V
OC 端子输出低电压	V_{CL}		-	0.1	0.5	V
		可 0V 电池充电的功能(允	 许)			
充电器起始电压(允许 向 0V 电池充电功能)	V_{0CH}	允许向 0V 电池充电功能	0.0	0.7	1.2	V

说明: *1、此温度范围内的参数是设计保证值,而非高、低温实测筛选。

9. 电池保护 IC 应用电路示例

标记	器件名称	用途	最小值	典型值	最大值	说明
R1	电阻	限流、稳定VDD、加强ESD	100Ω	100Ω	470Ω	*1
R2	电阻	限流	300Ω	2kΩ	2kΩ	*2
C1	电容	滤波,稳定VDD	0.01µF	0.1μF	1.0µF	*3
M1	N-MOSFET	放电控制	-	-	-	*4
M2	N-MOSFET	充电控制	-	-	-	*5

- *1、R1连接过大电阻,由于耗电流会在R1上产生压降,影响检测电压精度。当充电器反接时,电流从充电器流向IC,若R1过大有可能导致VDD-VSS端子间电压超过绝对最大额定值的情况发生。
- *2、R2连接过大电阻,当异常大电流充电时,可能导致不能切断充电回路。但为控制充电器 反接时的电流,请尽可能选取较大的阻值。
- *3、C1有稳定VDD电压的作用,请不要连接0.01uF以下的电容。
- *4、使用MOSFET的阈值电压在过放电检测电压以上时,可能导致在过放电保护之前停止放电。
- *5、门极和源极之间耐压在充电器电压以下时,N-MOSFET有可能被损坏。

注意:

- (1) 上述参数有可能不经预告而作更改,请及时到本公司网站下载最新版规格书。 网站地址 http://www.hycontek.com。
- (2) 外围器件如需调整,建议客户进行充分的评估和测试。

1 节锂离子/锂聚合物电池保护 IC

10.工作说明

10.1. 正常工作状态

此 IC 持续侦测连接在 VDD 和 VSS 之间的电池电压,以及 CS 与 VSS 之间的电压差,来控制充电和放电。当电池电压在过放电检测电压(V_{DL})以上并在过充电检测电压(V_{CU})以下,且 CS 端子电压在充电过流检测电压(V_{CIP})以上并在放电过流检测电压(V_{DIP})以下时,IC 的 OC 和 OD 端子都输出高电平,使充电控制用 MOSFET 和放电控制用 MOSFET 同时导通,这个状态称为"正常工作状态"。此状态下,充电和放电都可以自由进行

注意: 初次连接电芯时,会有不能放电的可能性,此时,短接 CS 端子和 VSS 端子,或者连接充电器,就能恢复到正常工作状态。

10.2. 过充电状态

正常工作状态下的电池,在充电过程中,一旦电池电压超过过充电检测电压(V_{CU}),并且这种状态持续的时间超过过充电检测延迟时间(T_{OC})以上时,HY2110-HB 会关闭充电控制用的 MOSFET(OC 端子),停止充电,这个状态称为"过充电状态"。

过充电状态的释放,有以下两种方法:

- (1)由于自放电使电池电压降低到过充电释放电压(V_{CR})以下时,过充电状态释放,恢复到正常工作状态。
- (2)移走充电器并连接负载,当电池电压降低到过充电检测电压(V_{CU})以下时,过充电状态释放,恢复到正常工作状态。

10.3. 过放电状态

正常工作状态下的电池,在放电过程中,当电池电压降低到过放电检测电压(V_{DR})一下,并且这种状态持续的时间超过过放电检测延迟时间(T_{OD})以上时,HY2110-HB 会关闭放电控制用的 MOSFET(OD 端子),停止放电,这个状态称为"过放电状态"。

过放电状态的释放,有以下三种方法:

- (1)连接充电器,若 CS 端子电压低于充电过流检测电压(V_{CIP}),当电池电压高于过放电检测电压(V_{DI})时,过放电状态释放,恢复到正常工作状态。
- (2) 连接充电器,若 CS 端子电压高于充电过流检测电压(V_{CIP}),当电池电压高于过放电释放电压(V_{DR})时,过放电状态释放,恢复到正常工作状态。
- (3)没有连接充电器时,如果电池电压自恢复到高于过放电释放电压(V_{DR})时,过放电状态释放,恢复到正常工作状态,即有过放自恢复功能。

10.4. 放电过流状态(放电过流检测功能和负载短路检测功能)

正常工作状态下的电池,HY2110-HB 通过检测 CS 端子电压持续侦测放电电流。一旦 CS 端子电压超过放电过流检测电压(V_{DIP}),并且这种状态持续的时间超过放电过流检测延迟时间(T_{DIP}),则关闭放电控制用的 MOSFET(OD 端子),停止放电,这个状态称为"放电过流状态"。

而一旦 CS 端子电压超过负载短路检测电压 (V_{SIP}) , 并且这种状态持续的时间超过负载

1 节锂离子/锂聚合物电池保护 IC

短路检测延迟时间(T_{SIP}),则也关闭放点控制用的 MOSFET (OD 端子),停止放电,这个状态称为"负载短路状态"。

连接在电池正极(PB+)和电池负极(PB-)之间的阻抗大于"自动释放阻抗", CS端子电压在放电过流检测电压(V_{DIP})以下时,放电过流状态释放。

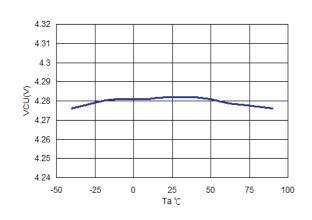
10.5. 充电过流状态

正常工作状态下的电池,在充电过程中,如果 CS 端子电压低于充电过流检测电压(V_{CIP}),并且这种状态持续的时间超过充电过流检测延迟时间(T_{CIP}),则关闭充电控制用的 MOSFET(OC 端子),停止充电,这个状态称为"充电过流状态"。

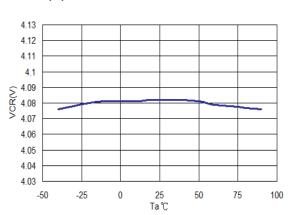
进入充电过流检测状态后,如果断开充电器使得 CS 端子电压高于充电过流检测电压 (V_{CIP}) 时,充电过流状态被解除,恢复到正常工作状态。

10.6. 向 0V 电池充电功能 (允许)

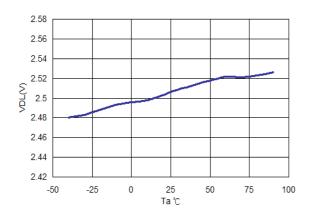
此功能用于对已经自放电到 0V 的电池进行再充电。当连接在电池正极(PB+)和电池负极(PB-)之间的充电器电压,高于"向 0V 电池充电的充电器起始电压(V_{0CH})"时,充电控制用 MOSFET 的门极固定为 VDD 端子的电位,由于充电器电压使 MOSFET 的门极和源极之间的电压差高于其导通电压,充电控制用 MOSFET 导通(OC 端子),开始充电。这时,放电控制用 MOSFET 仍然是关断的,充电电流通过其内部寄生二极管流过。当电池电压高于过放电检测电压(V_{DL})时,HY2110-CB 进入正常工作状态。

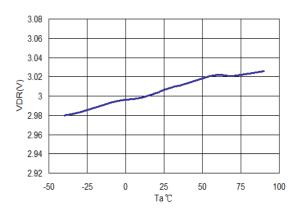

注意:

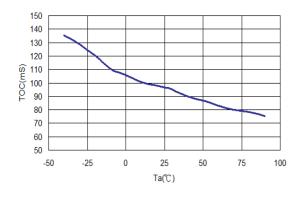
- (1) 某些完全自放电后的电池,不允许被再次充电,这是由锂电池的特性决定的。请询问电池供应商,确认所购买的电池是否具备"允许向 0V 电池充电"的功能,还是"禁止向 0V 电池充电"的功能。
- (2) "允许向 0V 电池充电功能"比"异常充电电流检测功能"优先级更高。因此。使用"允许向 0V 电池充电"功能的 IC,在电池电压较低的时候会强制充电。电池电压低于过放电检测电压(V_{DL})以下时,不能检测异常充电电流。

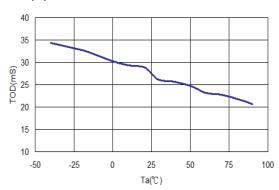


11.特性(典型数据)

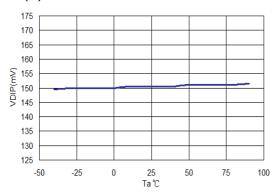

- **11.1.**过充电检测电压/过充电释放电压,过放电检测电压/过放电释放电压,放电过流检测电压/负载短路检测电压以及各延迟时间
 - (1) V_{CU} vs. Ta



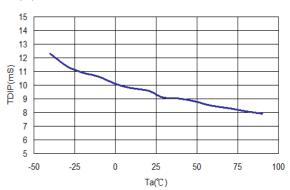

(3) V_{DL} vs. Ta

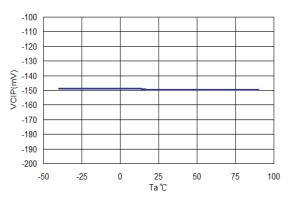

(4) V_{DR} vs. Ta

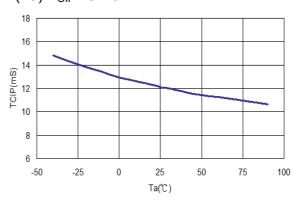
(5) T_{OC} vs. Ta

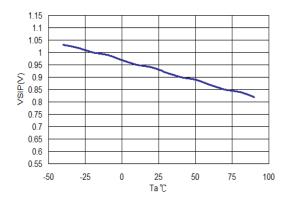


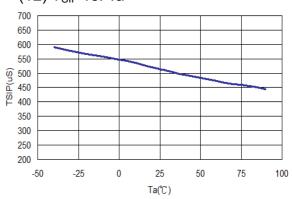
(6) T_{OD} vs. Ta




(7) V_{DIP} vs. Ta


(8) T_{DIP} vs. Ta


(9) V_{CIP} vs. Ta

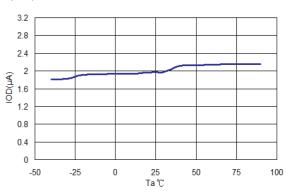

(10) T_{CIP} vs. Ta

(11) V_{SIP} vs. Ta

(12) T_{SIP} vs. Ta



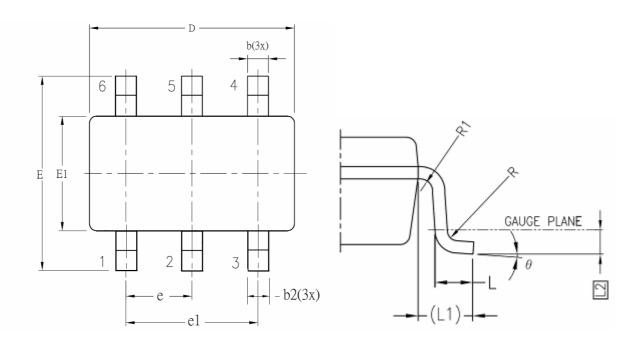
1 节锂离子/锂聚合物电池保护 IC

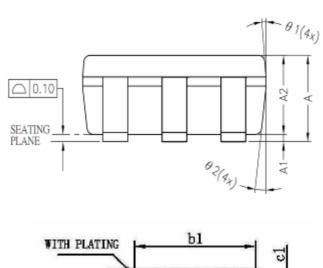


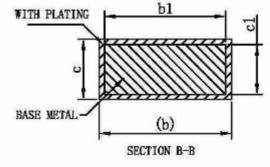
11.2. 耗电流

(11) I_{DD} vs. Ta

(12) I_{OD} vs. Ta

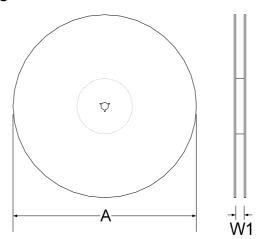



12.封装信息

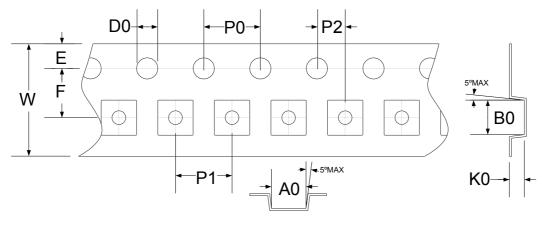

12.1.SOT-23-6 封装

说明:单位为 mm。

SYM		. DIMENSION MILLIMETER			
BOL	MINIMUM	NOMINAL	MAXIMUM		
Α	-	1.30	1.40		
A 1	0	-	0.15		
A2	0.90	1.20	1.30		
b	0.30	-	0.50		
b1	0.30	0.40	0.45		
b2	0.30	0.40	0.50		
С	0.08	-	0.22		
c1	0.08	0.13	0.20		
D		2.90 BSC			
Е		2.80 BSC			
E1		1.60 BSC			
е		0.95 BSC			
e1		1.90 BSC			
L	0.30	0.45	0.60		
L1		0.60 REF			
L2		0.25 BSC			
R	0.10	-	-		
R1	0.10	-	0.25		
θ	0°	4°	8°		
θ1	5°	-	15°		
θ2	5°	-	15°		

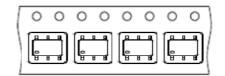


13. Tape & Reel 信息


13.1. Tape & Reel 信息---SOT-23-6 (样式一)

说明:单位为 mm。

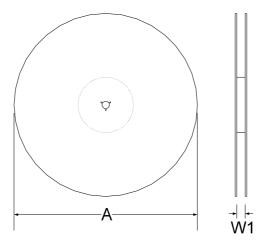
13.1.1. Reel Dimensions

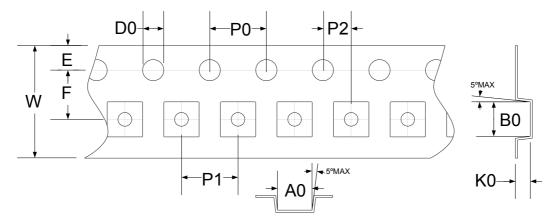

13.1.2. Carrier Tape Dimensions

SYMBOLS		eel nsions	Carrier Tape Dimensions									
	Α	W1	A0	В0	K0	P0	P1	P2	Е	F	D0	W
Spec.	178	9.0	3.30	3.20	1.50	4.00	4.00	2.00	1.75	3.50	1.50	8.00
Tolerance	±0.50	+1.50/-0	±0.10	±0.10	±0.10	±0.10	±0.10	±0.05	±0.10	±0.05	+0.1/-0	±0.20

Note: 10 Sprocket hole pitch cumulative tolerance is ±0.20mm.

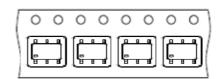
13.1.3. Pin1 direction




13.2. Tape & Reel 信息---SOT-23-6(样式二)

说明:单位为 mm。

13.2.1. Reel Dimensions


13.2.2. Carrier Tape Dimensions

SYMBOLS		eel nsions				C	Carrier T	ape Din	nension	S		
	Α	W1	A0	В0	K0	P0	P1	P2	Е	F	D0	W
Spec.	178	9.4	3.17	3.23	1.37	4.00	4.00	2.00	1.75	3.50	1.55	8.00
Tolerance	±2.00	±1.50	±0.10	±0.10	±0.10	±0.10	±0.10	±0.05	±0.10	±0.05	±0.05	+0.30/-0.10

Note: 10 Sprocket hole pitch cumulative tolerance is ±0.20mm.

13.2.3. Pin1 direction

1 节锂离子/锂聚合物电池保护 IC

14.修订记录

以下描述本文件差异较大的地方,而标点符号与字形的改变不在此描述范围。

版本 页次 变更摘要 V01 - 新版发行