

规格书

1 节锂离子/锂聚合物电池保护 IC

1 节锂离子/锂聚合物电池保护 IC

目 录

1.	機还	4
2.	特点	4
3.	应用	4
4.	方框图	5
5.	订购信息	5
6.	封装、脚位及标记信息	6
7.	绝对最大额定值	6
8.	电气特性	7
9.	电池保护IC应用电路示例	9
10.	工作说明	10
10.1	. 正常工作状态	10
10.2		
10.3		
10.4		
10.5		
10.6		
11.	时序图	13
12.	特性(典型数据)	17
13.	封装信息和LAND PATTERN DESIGN建议	20
13.1	. SON-1.6*1.6-6L封装	20
13.2	. Land Patterm Design建议	21
14.	TAPE & REEL 信息	22
14.1	. Tape & Reel 信息SON-1.6*1.6-6L	22
15.	修订记录	23

1 节锂离子/锂聚合物电池保护 IC

注意:

- 1、本说明书中的内容,随着产品的改进,有可能不经过预告而更改。请客户及时到本公司网站下载更新 http://www.hycontek.com。
- 2、本规格书中的图形、应用电路等,因第三方工业所有权引发的问题,本公司不承担其责任。
- 3、本产品在单独应用的情况下,本公司保证它的性能、典型应用和功能符合说明书中的条件。当使用 在客户的产品或设备中,以上条件我们不作保证,建议客户做充分的评估和测试。
- 4、请注意输入电压、输出电压、负载电流的使用条件,使 IC 内的功耗不超过封装的容许功耗。对于 客户在超出说明书中规定额定值使用产品,即使是瞬间的使用,由此所造成的损失,本公司不承担 任何责任。
- 5、本产品虽内置防静电保护电路,但请不要施加超过保护电路性能的过大静电。
- 6、本规格书中的产品,未经书面许可,不可使用在要求高可靠性的电路中。例如健康医疗器械、防灾器械、车辆器械、车载器械及航空器械等对人体产生影响的器械或装置,不得作为其部件使用。
- 7、本公司一直致力于提高产品的质量和可靠度,但所有的半导体产品都有一定的失效概率,这些失效 概率可能会导致一些人身事故、火灾事故等。当设计产品时,请充分留意冗余设计并采用安全指标, 这样可以避免事故的发生。
- 8、本规格书中内容,未经本公司许可,严禁用于其它目的之转载或复制。

1 节锂离子/锂聚合物电池保护 IC

1. 概述

HY2113-OH1B 内置高精度检测电路和延迟电路,是用于单节锂离子/锂聚合物可再充电电池的保护 IC。

本 IC 适合于对 1 节锂离子/锂聚合物可再充电电池的过充电、过放电和过电流进行保护。

2. 特点

HY2113-OH1B 具备如下特点:

(1) 高精度电压检测电路

● 过充电检测电压	4.400V	精度 ±25m V
● 过充电释放电压	4.200V	精度±50mV
● 过放电检测电压	2.800V	精度±50mV
● 过放电释放电压	3.000V	精度±50mV
● 放电过流检测电压	150mV	精度±15mV
● 充电过流检测电压	-200mV	精度 ±40mV
● 负载短路检测电压	0.85V(固定)	精度 ±0.3V

(2) 各延迟时间由内部电路设置(不需外接电容)

过充电检测延时时间
过放电检测延时时间
放电过流检测延时时间
充电过流检测延时时间
负载短路检测延时时间
300μs typ.

- (3) 过放自恢复功能:有
- (4) 低耗电流

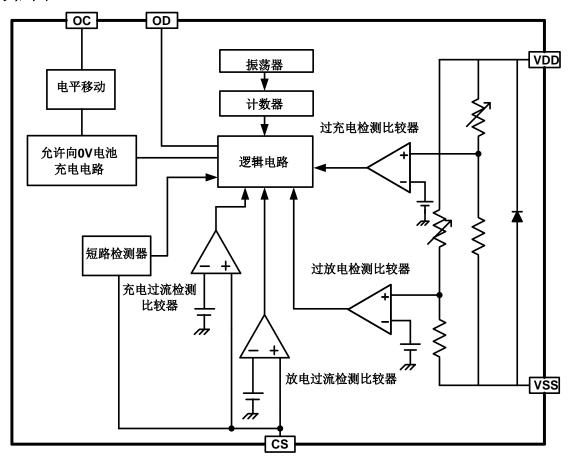
● 工作模式 典型值 3.0µA, 最大值 6.0µA (VDD=3.9V)

● 过放电时耗电流 典型值 0.16µA,最大值 0.5µA (VDD=2.0V)

- (5) 连接充电器的端子采用高耐压设计(CS 端子和 OC 端子,绝对最大额定值是 20V)
- (6) 向 OV 电池充电功能: 允许

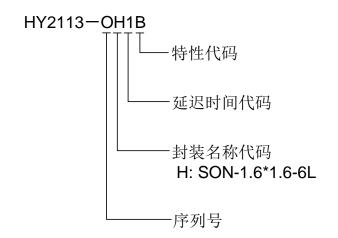
(7) 宽工作温度范围: -40℃~+85℃

(8) 小型封装: SON-1.6*1.6-6L


(9) 无卤素绿色环保产品

3. 应用

- 1 节锂离子可再充电电池组
- 1节锂聚合物可再充电电池组



4. 方框图

5. 订购信息

● 产品名称定义

1 节锂离子/锂聚合物电池保护 IC

6. 封装、脚位及标记信息

● SON-1.6*1.6-6L 封装

表 1、SON-1.6*1.6-6L 封装

脚位	符号	说明
1	NC	无连接
2	OC	充电控制用 MOSFET 门极连接端子
3	OD	放电控制用 MOSFET 门极连接端子
4	VSS	接地端,负电源输入端子
5	VDD	电源端,正电源输入端子
6	CS	过电流检测输入端子,充电器检测端子

3:产品名称。

O: 序列号。

1: 延迟时间代码。

B: 特性代码。

xxx: 生产识别码。

7. 绝对最大额定值

表 2、绝对最大额定值(VSS=0V, Ta=25℃,除非特别说明)

项目	符号	规格	单位
VDD 和 VSS 之间输入电压	V_{DD}	VSS-0.3~VSS+10	V
OC 输出端子电压	V _{oc}	VDD-20~VDD+0.3	V
OD 输出端子电压	V _{OD}	VSS-0.3~VDD+0.3	V
CS 输入端子电压	V _{CS}	VDD-20~VDD+0.3	V
工作温度范围	T _{OP}	-40~+85	$^{\circ}$
储存温度范围	T _{ST}	-40~+125	$^{\circ}$
容许功耗	P _D	250	mW

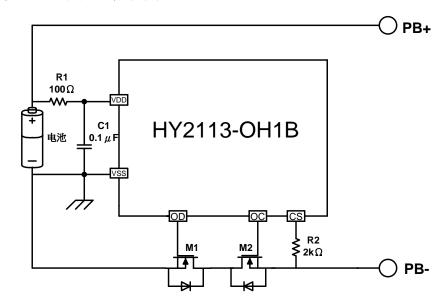
1 节锂离子/锂聚合物电池保护 IC

8. 电气特性

表 3、电气参数(VSS=0V,Ta=25℃,除非特别说明。)

项目	符号	条件	最小值	典型值	最大值	单位			
		输入电压							
VDD-VSS 工作电压	V _{DSOP1}	-	1.5	-	8	V			
VDD-CS 工作电压	V_{DSOP2}	-	1.5	-	20	V			
耗电流									
工作电流	I_{DD}	V _{DD} =3.9V	-	3.0	6.0	μA			
过放电时耗电流	I_{OD}	V _{DD} =2.0V	-	0.16	0.5	μΑ			
		检测电压							
过充电检测电压	V_{CU}		4.375	4.400	4.425	V			
过充电释放电压	V_{CR}		4.150	4.200	4.250	V			
过放电检测电压	V_{DL}		2.750	2.800	2.850	V			
过放电释放电压	V_{DR}		2.950	3.000	3.050	V			
放电过流检测电压	V_{DIP}	V _{DD} =3.6V	135	150	165	mV			
负载短路检测电压	V_{SIP}	V _{DD} =3.0V	0.55	0.85	1.15	V			
充电过流检测电压	V_{CIP}	V _{DD} =3.6V	-240	-200	-160	mV			
		延时时间							
过充电检测延迟时间	T_OC	V _{DD} =3.9V→4.5V	1000	1300	1600	ms			
过放电检测延迟时间	T_OD	V _{DD} =3.6V→2.0V	115	145	175	ms			
放电过流检测延迟时间	T_DIP	V_{DD} =3.6V , CS=0.4V	9	12	15	ms			
充电过流检测延迟时间	T_{CIP}	V_{DD} =3.6V , CS=-0.4V	6	8	10	ms			
负载短路延迟时间	T_{SIP}	V_{DD} =3.0V , CS=1.3V	200	300	400	μs			
		控制端子输出电压							
OD 端子输出高电压	V_{DH}		VDD-0.1	VDD-0.02	-	V			
OD 端子输出低电压	V_{DL}		-	0.1	0.5	V			
OC 端子输出高电压	V_{CH}		VDD-0.1	VDD-0.02	-	V			
OC 端子输出低电压	V_{CL}		-	0.1	0.5	V			
	fi	可 0V 电池充电的功能(允	许)						
充电器起始电压(允许 向 0V 电池充电功能)	V_{0CH}	允许向 0V 电池充电功能	1.2	-	-	V			

1 节锂离子/锂聚合物电池保护 IC


表 **4、**电气参数(VSS=0V,Ta=-20℃~60℃(*1))

项目	符号	条件	最小值	典型值	最大值	单位			
輸入电压									
VDD-VSS 工作电压	V_{DSOP1}	-	1.5	-	8	V			
VDD-CS 工作电压	V_{DSOP2}	-	1.5	-	20	V			
耗电流									
工作电流	I_{DD}	V _{DD} =3.9V	-	3.0	6.0	μΑ			
过放电时耗电流	I_{OD}	V _{DD} =2.0V	-	0.16	0.5	μΑ			
		检测电压							
过充电检测电压	V_{CU}		4.365	4.400	4.435	V			
过充电释放电压	V_{CR}		4.145	4.200	4.255	V			
过放电检测电压	V_{DL}		2.735	2.800	2.865	V			
过放电释放电压	V_{DR}		2.915	3.000	3.085	V			
放电过流检测电压	V_{DIP}	V _{DD} =3.6V	125	150	175	mV			
负载短路检测电压	V_{SIP}	V _{DD} =3.0V	0.55	0.85	1.15	V			
充电过流检测电压	V_{CIP}	V _{DD} =3.6V	-245	-200	-155	mV			
		延时时间							
过充电检测延迟时间	T_OC	V _{DD} =3.9V→4.5V	800	1300	1800	ms			
过放电检测延迟时间	T_OD	V _{DD} =3.6V→2.0V	95	145	195	ms			
放电过流检测延迟时间	T_{DIP}	V_{DD} =3.6V , CS=0.4V	7	12	17	ms			
充电过流检测延迟时间	T_{CIP}	V_{DD} =3.6V , CS=-0.4V	5	8	11	ms			
负载短路延迟时间	T_{SIP}	V_{DD} =3.0V , CS=1.3V	140	300	460	μs			
		控制端子输出电压							
OD 端子输出高电压	V_{DH}		VDD-0.1	VDD-0.02	-	V			
OD 端子输出低电压	V_{DL}		-	0.1	0.5	V			
OC 端子输出高电压	V_{CH}		VDD-0.1	VDD-0.02	-	V			
OC 端子输出低电压	V_{CL}		-	0.1	0.5	V			
		向 0V 电池充电的功能(允	许)						
充电器起始电压(允许 向 0V 电池充电功能)	V_{0CH}	允许向 0V 电池充电功能	1.2	-	-	V			

说明: *1、此温度范围内的参数是设计保证值,而非高、低温实测筛选。

9. 电池保护 IC 应用电路示例

标记	器件名称	用途	最小值	典型值	最大值	说明
R1	电阻	限流、稳定VDD、加强ESD	100Ω	100Ω	200Ω	*1
R2	电阻	限流	1kΩ	2kΩ	2kΩ	*2
C1	电容	滤波,稳定VDD	0.01µF	0.1μF	1.0µF	*3
M1	N-MOSFET	放电控制	-	-	-	*4
M2	N-MOSFET	充电控制	-	-	-	*5

- *1、R1连接过大电阻,由于耗电流会在R1上产生压降,影响检测电压精度。当充电器反接时,电流从充电器流向IC,若R1过大有可能导致VDD-VSS端子间电压超过绝对最大额定值的情况发生。
- *2、R2连接过大电阻,当连接高电压充电器时,有可能导致不能切断充电电流的情况发生。但为控制充电器反接时的电流,请尽可能选取较大的阻值。
- *3、C1有稳定VDD电压的作用,请不要连接0.01uF以下的电容。
- *4、使用MOSFET的阈值电压在过放电检测电压以上时,可能导致在过放电保护之前停止放电。
- *5、门极和源极之间耐压在充电器电压以下时,N-MOSFET有可能被损坏。

注意:

1. 上述参数有可能不经过预告而作更改,请及时到网站上下载最新版规格书。

网址: http://www.hycontek.com。

2. 外围器件如需调整,建议客户进行充分的评估和测试。

10.工作说明

10.1. 正常工作状态

此IC持续侦测连接在VDD和VSS之间的电池电压,以及CS与VSS之间的电压差,来控制充电和放电。当电池电压在过放电检测电压(V_{DL})以上并在过充电检测电压(V_{CU})以下,且CS端子电压在充电过流检测电压(V_{CIP})以上并在放电过流检测电压(V_{DIP})以下时,IC的OC和OD端子都输出高电平,使充电控制用MOSFET和放电控制用MOSFET同时导通,这个状态称为"正常工作状态"。此状态下,充电和放电都可以自由进行。

注意:初次连接电芯时,会有不能放电的可能性,此时,短接 CS 端子和 VSS 端子,或者连接充电器,就能恢复到正常工作状态。

10.2. 过充电状态

正常工作状态下的电池,在充电过程中,一旦电池电压超过过充电检测电压(V_{CU}),并且这种状态持续的时间超过过充电检测延迟时间(T_{OC})以上时,HY2113-OH1B会关闭充电控制用的MOSFET(OC端子),停止充电,这个状态称为"过充电状态"。

过充电状态在如下2种情况下可以释放:

不连接充电器时,

- (1) 由于自放电使电池电压降低到过充电释放电压(V_{CR})以下时,过充电状态释放,恢复到正常工作状态。
- (2)连接负载放电,放电电流先通过充电控制用MOSFET的寄生二极管流过,此时,CS端子侦测到一个"二极管正向导通压降(Vf)"的电压。当CS端子电压在放电过流检测电压(V_{DIP})以上且电池电压降低到过充电检测电压(V_{CU})以下时,过充电状态释放,恢复到正常工作状态。

注意: 进入过充电状态的电池,如果仍然连接着充电器,即使电池电压低于过充电释放电压(V_{CR}),过充电状态也不能释放。断开充电器,CS端子电压上升到充电过流检测电压(V_{CIP})以上时,过充电状态才能释放。

10.3. 过放电状态

正常工作状态下的电池,在放电过程中,当电池电压降低到过放电检测电压(V_{DL})以下,并且这种状态持续的时间超过过放电检测延迟时间(T_{OD})以上时,HY2113-OH1B会关闭放电控制用的MOSFET(OD端子),停止放电,这个状态称为"过放电状态"。

过放电状态的释放,有以下两种情况:

- (1)连接充电器,若CS端子低于充电过流检测电压(V_{CIP}),当电池电压高于过放电检测电压(V_{DI})时,过放电释放,恢复到正常工作状态。
- (2)连接充电器,若CS端子电压高于充电过流检测电压(V_{CIP}),当电池电压高于过放电释放电压(V_{DR})时,过放电状态释放,恢复到正常工作状态。
- (3)没有连接充电器时,如果电池电压自恢复到高于过放电释放电压(V_{DR})时,过放电状态释放,恢复到正常工作状态,即"有过放自恢复功能"。

10.4. 放电过流状态(放电过流检测功能和负载短路检测功能)

正常工作状态下的电池,HY2113-OH1B通过检测CS端子电压持续侦测放电电流。一旦 CS端子电压超过放电过流检测电压(V_{DIP}),并且这种状态持续的时间超过放电过流检测延迟时间(T_{DIP}),则关闭放电控制用的MOSFET(OD端子),停止放电,这个状态称为"放电过流状态"。

而一旦CS端子电压超过负载短路检测电压(V_{SIP}),并且这种状态持续的时间超过负载短路检测延迟时间(T_{SIP}),则也关闭放电控制用的MOSFET(OD端子),停止放电,这个状态称为"负载短路状态"。

当连接在电池正极(PB+)和电池负极(PB-)之间的阻抗大于放电过流/负载短路释放阻抗(典型值约 $300K\Omega$)时,放电过流状态和负载短路状态释放,恢复到正常工作状态。另外,即使连接在电池正极(PB+)和电池负极(PB-)之间的阻抗小于放电过流/负载短路释放阻抗,当连接上充电器,CS端子电压降低到放电过流保护电压(V_{DIP})以下,也会释放放电过流状态或负载短路状态,回到正常工作状态。

注意:

(1) 若不慎将充电器反接时,回路中的电流方向与放电时电流方向一致,如果CS端子电压高于放电过流检测电压(V_{DIP}),则可以进入放电过流保护状态,切断回路中的电流,起到保护的作用。

10.5. 充电过流状态

正常工作状态下的电池,在充电过程中,如果CS端子电压低于充电过流检测电压(V_{CIP}),并且这种状态持续的时间超过充电过流检测延迟时间(T_{CIP}),则关闭充电控制用的MOSFET(OC端子),停止充电,这个状态称为"充电过流状态"。

进入充电过流检测状态后,如果断开充电器使得**CS**端子电压高于充电过流检测电压(**V**_{CIP})时,充电过流状态被解除,恢复到正常工作状态。

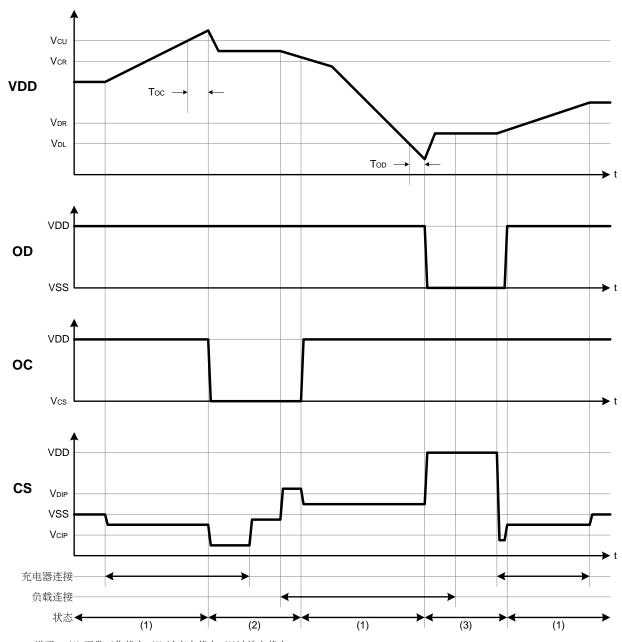
10.6. 向 0V 电池充电功能(允许)

此功能用于对已经自放电到 0V的电池进行再充电。当连接在电池正极(PB+)和电池负极(PB-)之间的充电器电压,高于"向 0V电池充电的充电器起始电压(V_{OCH})"时,充电控制用MOSFET的门极固定为VDD端子的电位,由于充电器电压使MOSFET的门极和源极之间的电压差高于其导通电压,充电控制用MOSFET导通(OC端子),开始充电。这时,放电控制用MOSFET仍然是关断的,充电电流通过其内部寄生二极管流过。当电池电压高于过放电检测电压(V_{DL})时,HY2113-OH1B进入正常工作状态。

注意:

- 1. 某些完全自放电后的电池,不允许被再次充电,这是由锂电池的特性决定的。请询问电池供应商,确认所购买的电池是否具备"允许向 0V 电池充电"的功能,还是"禁止向 0V 电池充电"的功能。
- 2. "允许向 0V电池充电功能"比"充电过流检测功能"优先级更高。因此。使用"允许向 0V电池充电"功能的IC,在电池电压较低的时候会强制充电。电池电压低于过放电检测电

1 节锂离子/锂聚合物电池保护 IC

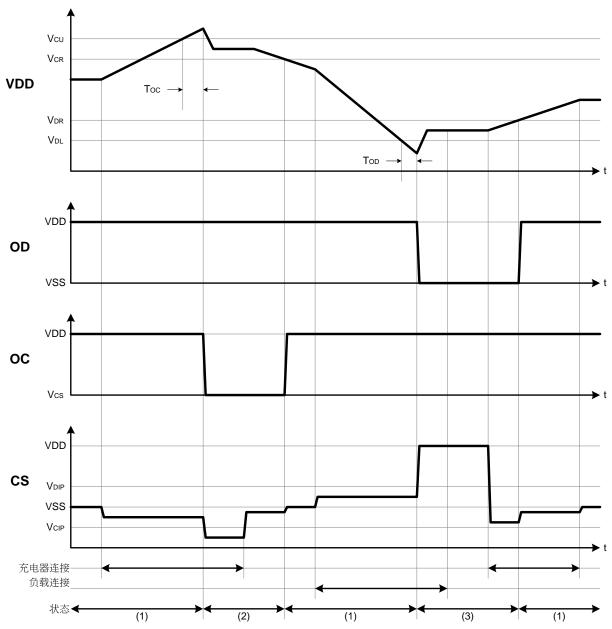


压(V_{DL})以下时,不能进行充电过流状态的检测。

11. 时序图

(1) 过充电检测,过放电检测

说明: (1) 正常工作状态, (2) 过充电状态, (3)过放电状态

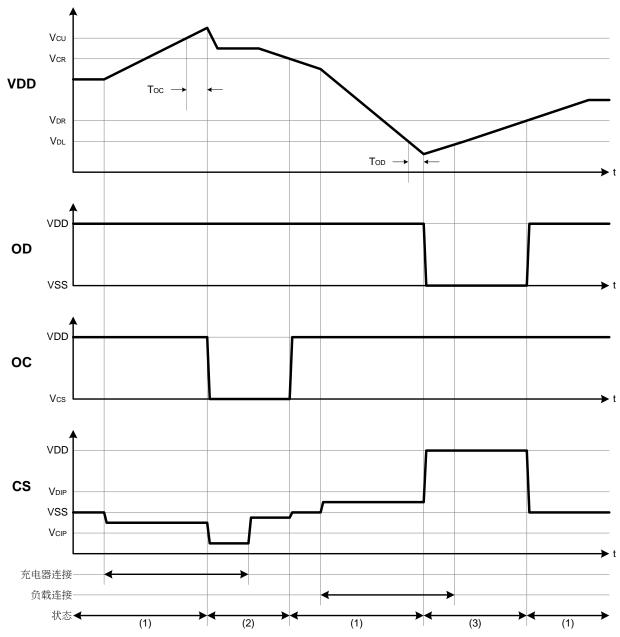

说明:

(a) 过充释放条件: V_{CS}>V_{DIP} & V_{DD}<V_{CU}。

(b) 过放释放条件: V_{CS}<V_{CIP} & V_{DD}>V_{DL}。

(2) 过充电检测,过放电检测

说明: (1) 正常工作状态, (2) 过充电状态, (3)过放电状态

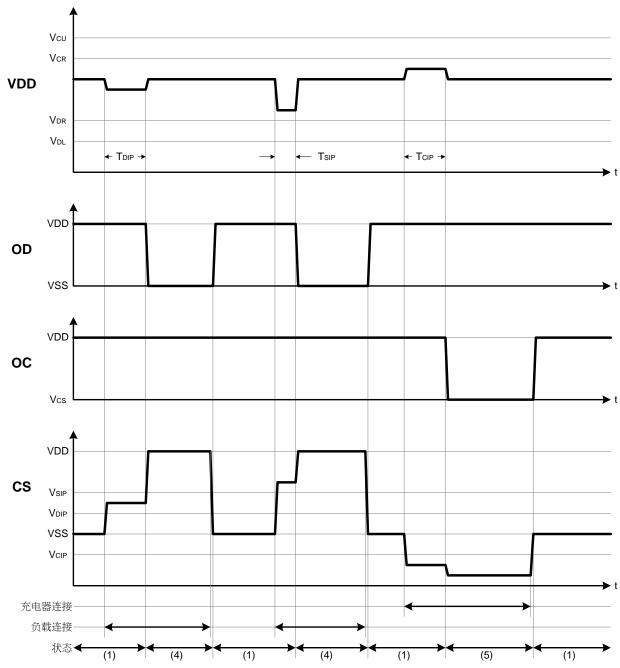

说明:

(a) 过充释放条件: V_{CIP}<V_{CS}<V_{DIP} & V_{DD}<V_{CR}。

(b) 过放释放条件: V_{CS}>V_{CIP} & V_{DD}>V_{DR}。

(3) 过充电检测,过放电检测(有过放自恢复功能)

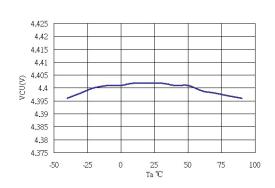
说明: (1) 正常工作状态, (2) 过充电状态, (3)过放电状态

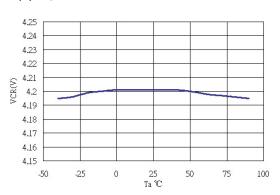

说明:

(a) 过充释放条件: V_{CIP}<V_{CS}<V_{DIP} & V_{DD}<V_{CR}。

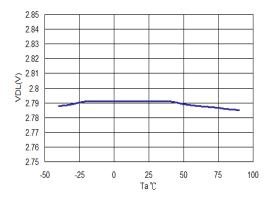
(b) 过放释放条件: V_{DD}>V_{DR}。

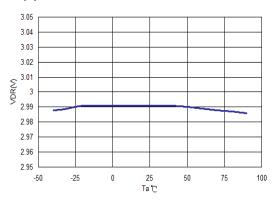
(4) 放电过流检测,负载短路检测,充电过流检测

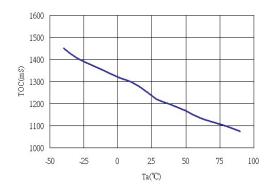

说明: (1) 正常工作状态, (4) 放电过流状态(放电过流及负载短路), (5)充电过流状态

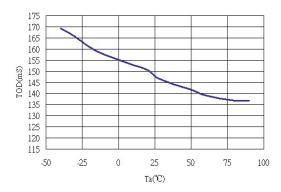

12.特性(典型数据)

1. 过充电检测电压/过充电释放电压,过放电检测电压/过放电释放电压,放电过流检测电压/ 负载短路检测电压,充电过流检测电压以及各延迟时间

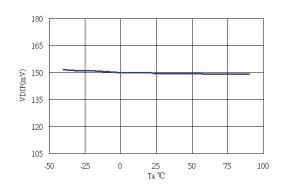

(1) V_{CU} vs. Ta


(2) V_{CR} vs. Ta

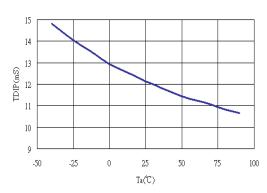

(3) V_{DL} vs. Ta

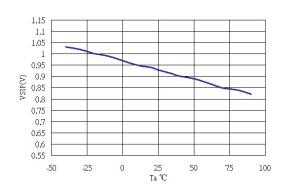

(4) V_{DR} vs. Ta

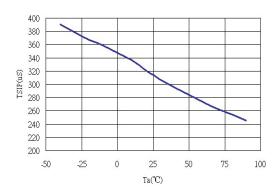
(5) T_{OC} vs. Ta

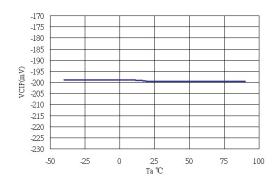


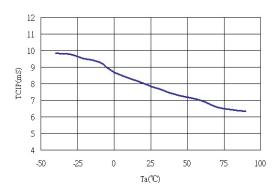
(6) T_{OD} vs. Ta



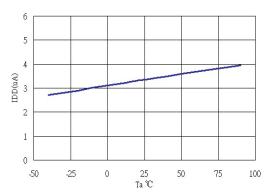

(7) V_{DIP} vs. Ta

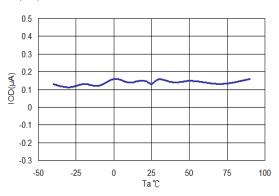

(8) T_{DIP} vs. Ta


(9) V_{SIP} vs. Ta


(10) T_{SIP} vs. Ta

(11) V_{CIP} vs. Ta

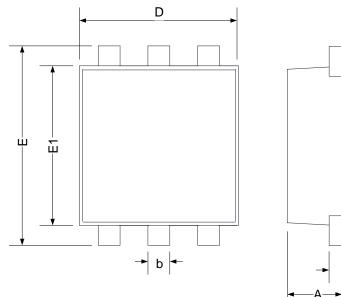

(12) T_{CIP} vs. Ta

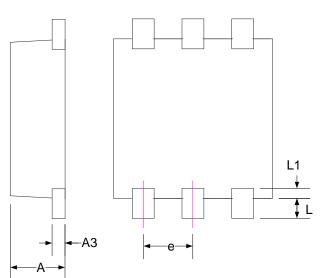


2.耗电流

(13) I_{DD} vs. Ta

(14) I_{OD} vs. Ta




13.封装信息和 Land Pattern Design 建议

13.1. SON-1.6*1.6-6L 封装

说明:

- 1. 单位为 mm.
- 2. 引脚的颜色是银色.

SYMBOLS	MIN	NOM	MAX		
А	0.50	0.55	0.60		
А3	0.08	0.13	0.18		
b	0.17	0.22	0.27		
D	1.55	1.60	1.65		
E1	1.55	1.60	1.65		
Е	1.90	2.00	2.10		
L	0.10	0.20	0.30		
L1	0.10 REF				
е	0.50 BASIC				

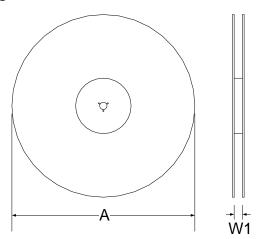
13.2. Land Patterm Design 建议

说明:

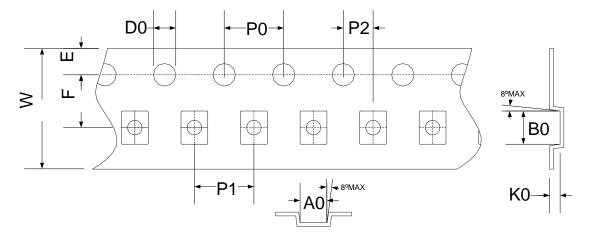
1. 单位为 mm.

注意:

- 1. Publication IPC-7351 is recommended for alternate designs.
- 2. http://www.hycontek.com/attachments/MSP/OJTI-HM-2013-002.pdf.

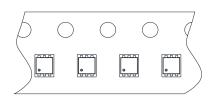


14. Tape & Reel 信息


14.1. Tape & Reel 信息---SON-1.6*1.6-6L

说明:单位为 mm。

14.1.1. Reel Dimensions


14.1.2. Carrier Tape Dimensions

SYMBOLS		eel nsions			Carrier Tape Dimensions							
	Α	W1	A0	В0	K0	P0	P1	P2	Е	F	D0	W
Spec.	178	9.4	1.80	2.20	0.70	4.00	4.00	2.00	1.75	3.50	1.50	8.00
Tolerance	±2.00	±1.50	±0.05	±0.05	±0.10	±0.10	±0.10	±0.05	±0.10	±0.05	±0.10	±0.20

Note: 10 Sprocket hole pitch cumulative tolerance is ±0.20mm.

14.1.3. PIN1 direction

1 节锂离子/锂聚合物电池保护 IC

15. 修订记录

以下描述本文件差异较大的地方,而标点符号与字形的改变不在此描述范围。

版本 页次 变更摘要

V01 - 新版发行。