

概述

ZLB4219AE,内置高精度电压检测电路和延迟电路,是用于单节锂离子/锂聚合物可再充电电池的保护 IC。

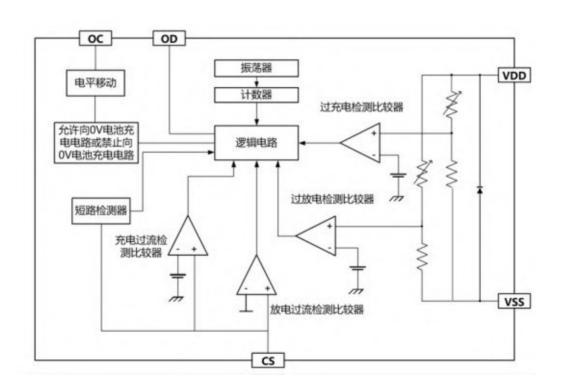
本系列IC适合于对1节锂离子/锂聚合物可再充电 电池的过充电、过放电、过电流和短路进行保护。精 确到±25mV的过充电检测电压可以保障安全高效充 电,并同时具有极低的工作时功耗。

本系列IC使用极小的SOT-23-6封装,非常适用于 空间限制要求很高的可充电电池组应用。

特点

- ▶ 高精度电压检测电路
- ▶ 各延迟时间由内部电路设置(不需外接电容)
- ▶ 低耗电流

工作模式 典型值 3.5μA (VDD=3.9V)


休眠模式 最大值 0.5μA (VDD=2.0V)

- ➤ 连接充电器的端子采用高耐压设计(CS端子和OC端子,绝对最大额定值为25V)
- ➤ 允许向0V电池充电功能
- ▶ 宽工作温度范围: -40°C~+85°C
- ▶ 小型封装: SOT-23-6
- ▶ 无卤素绿色环保产品

应用领域

- ▶ 1节钾离子可再充电电池组
- ▶ 1节锂聚合物可再充电电池组

方框图

产品目录

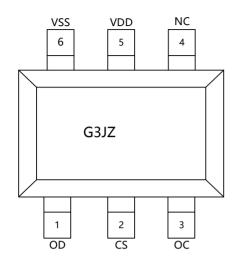
表 1、产品电气参数选择表

	过充电	过充电	过放电	过放电	放电过	充电过	向 0V 电	休眠功能
参数	检测电	释放电	检测电	释放电	流检测	流检测	池充电	/过放自
型号	压	压	压	压	电压	电压	功能	恢复功能
	$\mathbf{V}_{\mathbf{C}\mathbf{U}}$	V _{CR}	$ m V_{DL}$	$ m V_{DR}$	$ m V_{DIP}$	$ m V_{CIP}$	允许/	
	V CU	V CR	▼ DL	V DR	▼ DIP	▼ CIP	禁止	
ZLB4219AE	4.280V	4.080V	3.000V	3.000V	80mV	-200mV	允许	休眠功能

表 2、延迟时间参数选择表

水雪					
	过充电检测延	过放电检测延	放电过流检测	充电过流检测	负载短路检测
255.2日 n-4 (高)	迟时间	迟时间	延迟时间	延迟时间	延迟时间
延迟时间	Toc	T_{OD}	T_{DIP}	T_{CIP}	${f T_{SIP}}$
ZLB4219AE	1300ms	145ms	8ms	8ms	300µs

Version: 1.0 2017-10


备注:

- 1、表1与表2中列出各电气参数的典型值,各电气参数的精度请参电气特性参数表。
- 2、需要上述规格以外的产品时,请与本公司业务部联系。

引脚定义与器件标识

ZLB4219AE芯片提供 SOT-23-6 封装, 顶层如下图所示:

引脚号	引脚名	功能说明		
1	OD	放电控制用 MOSFET 门极连接端子		
2	CS	过电流检测输入端子,充电器检测端子		
3	OC	充电控制用 MOSFET 门极连接端子		
4	NC	无连接		
5	VDD	电源端,正电源输入端子		
6	VSS	接地端,负电源输入端子		

绝对最大额定值(VSS=0V, Ta=25℃,除非特别说明)

项 目	符号	规格	单 位
VDD 和 VSS 之间输入电压	V_{DD}	VSS-0.3~VSS+8	V
OC 输出端子电压	V _{oc}	VDD-25~VDD+0.3	V
OD 输出端子电压	V _{OD}	VSS-0.3~VDD+0.3	V
CS 输入端子电压	V _{CS}	VDD-25~VDD+0.3	V
工作温度范围	T_{OP}	-40~+85	$^{\circ}\!\mathrm{C}$
储存温度范围	T_{ST}	-40~+125	°C
容许功耗	P_{D}	250	mW

电气特性参数 (VSS=0V,Ta = 25°C, 除非特别注明)

项目	符号	条件	最小值	典型值	最大值	単位
检测电压						
过充电检测电压	V_{CU}		V _{CU} -0.025	V_{CU}	V _{CU} +0.025	V
过充电释放电压	V_{CR}		V _{CR} -0.050	V_{CR}	V _{CR} +0.050	V
过放电检测电压	V_{DL}		V_{DL} -0.050	$V_{ m DL}$	V _{DL} +0.050	V
过放电释放电压	V_{DR}		V _{DR} -0.10	V_{DR}	V _{DR} +0.10	V
放电过流检测电压	V_{DIP}	V _{DD} =3.6V	V_{DIP} -15	V_{DIP}	V _{DIP} +15	mV
负载短路检测电压	V_{SIP}	V _{DD} =3.9V	0.55	0.85	1.15	V
充电过流检测电压	V_{CIP}	V _{DD} =3.6V	V _{CIP} -25	$V_{ ext{CIP}}$	V _{CIP} +25	mV
输入电压						
VDD-VSS 工作电压	V_{DSOP1}	-	1.5	-	5.5	V
VDD-CS 工作电压	V_{DSOP2}	-	1.5	-	25	V
耗电流(休眠型)						
工作电流	I_{DD}	V _{DD} =3.9V	-	3.5	6.0	μΑ
过放电时耗电流	I_{OD}	V _{DD} =2.0V	-	-	0.1	μΑ
耗电流(自恢复型)						
工作电流	I_{DD}	V _{DD} =3.9V	-	3.5	6.0	μΑ
过放电时耗电流	I_{OD}	V _{DD} =2.0V	-	0.16	0.5	μΑ
控制端子输出电压						
OD 端子输出高电压	V_{DH}		VDD-0.1	VDD-0.02	-	V
OD 端子输出低电压	V_{DL}		-	0.1	0.5	V
OC 端子输出高电压	V_{CH}		VDD-0.1	VDD-0.02	-	V
OC 端子输出低电压	V_{CL}		-	0.1	0.5	V
向 0V 电池充电的功能						
充电器起始电压(允许向 0V 电池充电功能)	V _{0CH}	允许向 0V 电池充电功 能	1.2	-	-	V

Version: 1.0 2017-10

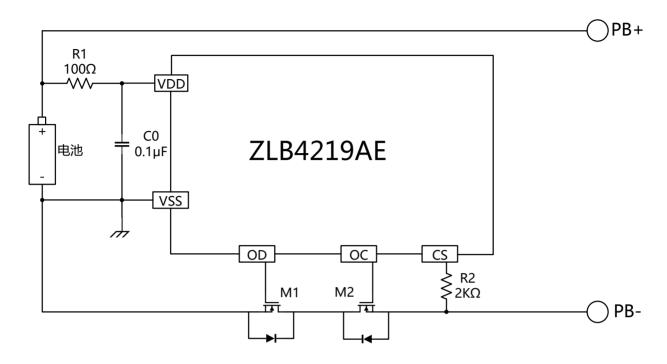
备注: 此温度范围内的参数是设计保证值,非高低温的实测筛选。

电气特性参数 (VSS=0V,Ta = -40~85°C, 除非特别注明)

项目	符号	条件	最小值	典型值	最大值	単位
检测电压						
过充电检测电压	V_{CU}		V _{CU} -0.055	V_{CU}	V _{CU} +0.040	V
过充电释放电压	V_{CR}		V _{CR} -0.080	V _{CR}	V _{CR} +0.065	V
过放电检测电压	V_{DL}		V_{DL} -0.080	$V_{ m DL}$	V _{DL} +0.080	V
过放电释放电压	V_{DR}		V _{DR} -0.16	V_{DR}	V _{DR} +0.16	V
放电过流检测电压	V_{DIP}	V _{DD} =3.6V	V_{DIP} -21	V_{DIP}	V _{DIP} +21	mV
负载短路检测电压	V_{SIP}	V _{DD} =3.9V	0.55	0.85	1.15	V
充电过流检测电压	V_{CIP}	V _{DD} =3.6V	V _{CIP} -30	$V_{ ext{CIP}}$	V _{CIP} +30	mV
输入电压						
VDD-VSS 工作电压	V_{DSOP1}	-	1.5	-	5.5	V
VDD-CS 工作电压	V_{DSOP2}	-	1.5	-	25	V
耗电流(休眠型)						
工作电流	I_{DD}	V _{DD} =3.9V	-	3.5	6.0	μΑ
过放电时耗电流	I_{OD}	V _{DD} =2.0V	-	-	0.1	μΑ
耗电流(自恢复型)						
工作电流	I_{DD}	V _{DD} =3.9V	-	3.5	6.0	μΑ
过放电时耗电流	I_{OD}	V _{DD} =2.0V	-	0.16	0.5	μΑ
控制端子输出电压						
OD 端子输出高电压	V_{DH}		VDD-0.1	VDD-0.02	-	V
OD 端子输出低电压	V_{DL}		-	0.1	0.5	V
OC 端子输出高电压	V_{CH}		VDD-0.1	VDD-0.02	-	V
OC 端子输出低电压	V_{CL}		-	0.1	0.5	V
向 0V 电池充电的功能						
充电器起始电压(允许向 0V 电池充电功能)	V _{0CH}	允许向 0V 电池充电功 能	1.2	-	-	V

备注: 此温度范围内的参数是设计保证值,非高低温的实测筛选。

检测延迟时间


项目	符号	条件	最小值	典型值	最大值	单位		
延迟时间参数(Ta = 2	延迟时间参数(Ta = 25°C)							
过充电检测延迟时间	T _{OC}	V _{DD} =3.9V→4.5V	1000	1300	1600	ms		
过放电检测延迟时间	T _{OD}	V_{DD} =3.6 V \rightarrow 2.0 V	115	145	175	ms		
放电过流检测延迟时间	T_{DIP}	V _{DD} =3.6V,CS=0.4V	6	8	10	ms		
充电过流检测延迟时间	T_{CIP}	V _{DD} =3.6V,CS=-0.3V	6	8	10	ms		
负载短路检测延迟时间	T_{SIP}	V _{DD} =3.9V,CS=1.3V	200	300	400	μs		
延迟时间参数(Ta = -	40~85 °C)							
过充电检测延迟时间	T _{OC}	V_{DD} =3.9V \rightarrow 4.5V	800	1300	1800	ms		
过放电检测延迟时间	T _{OD}	$V_{DD}=3.6V\rightarrow2.0V$	95	145	195	ms		
放电过流检测延迟时间	T_{DIP}	V _{DD} =3.6V,CS=0.4V	5	8	12	ms		
充电过流检测延迟时间	T _{CIP}	V _{DD} =3.6V,CS=-0.3V	5	8	12	ms		
负载短路检测延迟时间	T_{SIP}	V _{DD} =3.9V,CS=1.3V	150	300	540	μs		

Version: 1.0 2017-10

备注: 此温度范围内的参数是设计保证值,非高低温的实测筛选。

电池保护 IC 应用电路示例

标记	器件名称	用途	最小值	典型值	最大值	说明
R1	电阻	限流、稳定 VDD、加强 ESD	100Ω	100Ω	200Ω	*1
R2	电阻	限流	1kΩ	$2k\Omega$	$2k\Omega$	*2
C1	电容	滤波,稳定 VDD	0.01μF	0.1μF	1.0μF	*3
M1	N-MOSFET	放电控制	-	-	-	*4
M2	N-MOSFET	充电控制	-	-	-	*5

- *1、R1 连接过大电阻, 由于耗电流会在 R1 上产生压降, 影响检测电压精度。当充电器反接时, 电流从充电器流向 IC, 若 R1 过大有可能导致 VDD-VSS 端子间电压超过绝对最大额定值的情况发生。
- *2、R2 连接过大电阻,当连接高电压充电器时,有可能导致不能切断充电电流的情况发生。但为控制充电器反接时的电流,请尽可能选取较大的阻值。
 - *3、C1 有稳定 VDD 电压的作用,请不要连接 0.01µF 以下的电容。
- *4、使用 MOSFET 的阈值电压在过放电检测电压以上时,可能导致在过放电保护之前停止放电。
 - *5、门极和源极之间耐压在充电器电压以下时,N-MOSFET 有可能被损坏。

注意:

- 1. 上述参数有可能不经预告而作更改,请及时与业务部联系获取最新版规格。
- 2. 外围器件如需调整,建议客户进行充分的评估和测试。

功能描述

● 正常工作状态

此 IC 持续侦测连接在 VDD 和 VSS 之间的电池电压,以及 CS 与 VSS 之间的电压差,来控制充电和放电。当电池电压在过放电检测电压(V_{DL})以上并在过充电检测电压(V_{CU})以下,且 CS 端子电压在充电过流检测电压(V_{CIP})以上并在放电过流检测电压(V_{DIP})以下时,IC 的 OC 和 OD 端子都输出高电平,使充电控制用 MOSFET 和放电控制用 MOSFET 同时导通,这个状态称为"正常工作状态"。此状态下,充电和放电都可以自由进行。

注意: 初次连接电芯时,会有不能放电的可能性, 此时,短接 CS 端子和 VSS 端子,或者连接充电器, 就能恢复到正常工作状态。

● 过充电状态

正常工作状态下的电池,在充电过程中,一旦电池电压超过过充电检测电压(V_{CU}),并且这种状态持续的时间超过过充电检测延迟时间(T_{OC})以上时,ZLB4219AE会关闭充电控制用的MOSFET(OC端子),停止充电,这个状态称为"过充电状态"。过充电状态在如下 2 种情况下可以释放:不连接充电器时,

- (1)由于自放电使电池电压降低到过充电释放电压(V_{CR})以下时,过充电状态释放,恢复到正常工作状态。
- (2)连接负载放电,放电电流先通过充电控制用 MOSFET 的寄生二极管流过,此时 CS 端子侦测到一个"二极管正向导通压降(VF)"的电压。当 CS 端子电压在放电过流检测电压(V_{DIP})以上且电池电压 降低到过充电检测电压(V_{CU})以下时,过充电状态释放,恢复到正常工作状态。

注意: 进入过充电状态的电池, 如果仍然连接

着充电器,即使电池电压低于过充电释放电压(V_{CR}),过充电状态也不能释放。断开充电器,CS 端子电压上升到充电过流检测电压(V_{CIP})以上时,过充电状态才能释放。

● 过放电状态

正常工作状态下的电池,在放电过程中,当电池电压降低到过放电检测电压(V_{DL})以下,并且这种状态持续的时间超过过放电检测延迟时间(T_{OD})以上时,ZLB4219AE会关闭放电控制用MOSFET(OD端子),停止放电,这个状态称为"过放电状态",IC 进入休眠状态。

过放电状态的释放,有以下三种方法:

- (1) 连接充电器,若 CS 端子电压低于充电过流 检测电压(V_{CIP}),当电池电压高于过放电检测电压 (V_{DL}) 时,过放电状态释放,恢复到正常工作状态。
- (2)连接充电器,若 CS 端子电压高于充电过流 检测电压(V_{CIP}),当电池电压高于过放电释放电压 (V_{DR})时,过放电状态释放,恢复到正常工作状态。
- (3)没有连接充电器时,如果电池电压自恢复到高于过放电释放电压(V_{DR})时,过放电状态释放,恢复到正常工作状态,即"有过放自恢复功能"。

● 放电过流状态(放电过流检测功能和负载短路检测功能)

正常工作状态下的电池, ZLB4219AE通过检测 CS 端子电压持续侦测放电电流。一旦 CS端子电压超过放电过流检测电压(V_{DIP}),并且这种状态持续的时间超过放电过流检测延迟时间(T_{DIP}),则关闭放电控制用的 MOSFET(OD 端子),停止放电,这个状态称为"放电过流状态"。

而一旦 CS 端子电压超过负载短路检测电压 (V_{SIP}),并且这种状态持续的时间超过负载短路检测

延迟时间(T_{SIP}),则也关闭放电控制用的 MOSFET (OD 端子),停止放电,这个状态称为"负载短路状态"。

当连接在 PB+和 PB-之间的阻抗达到放电过流/负载短路自动释放可能阻抗以上时,放电过流状态和负载短路状态释放,恢复到正常工作状态。另外,即使连接在 PB+和 PB-之间的阻抗小于放电过流/负载短路释放阻抗,当连接上充电器,CS 端子电压降低到放电过流保护电压(V_{DIP})以下,也会释放放电过流状态或负载短路状态,回到正常工作状态。

注意:

- (1)根据电池电压、放电过流检测电压的设定值的改变,自动释放可能的阻抗是不同的。
- (2) 若不慎将充电器反接时,回路中的电流方向与放电时电流方向一致,如果 CS 端子电压高于放电过流检测电压(V_{DIP}),则可以进入放电过流保护状态,切断回路中的电流,起到保护的作用。

● 充电过流状态

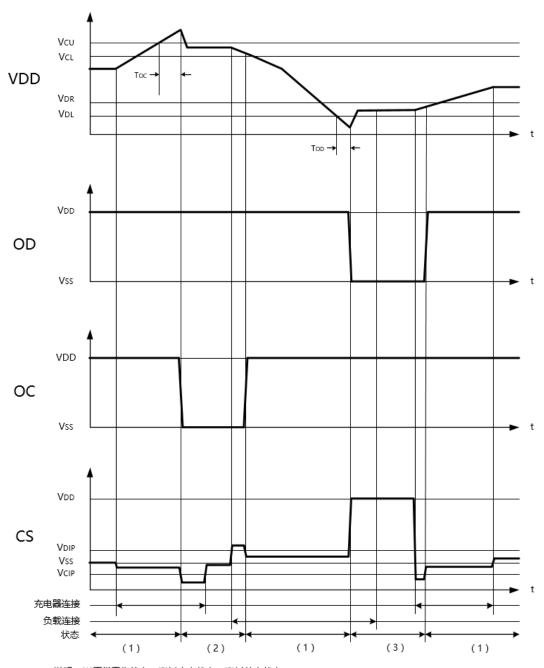
正常工作状态下的电池,在充电过程中,如果CS端子电压低于充电过流检测电压(V_{CIP}),并且这种状态持续的时间超过充电过流检测延迟时间(T_{CIP}),则关闭充电控制用的MOSFET(OC端子),停止充电,这个状态称为"充电过流状态"。

进入充电过流检测状态后,如果断开充电器使 CS 端子电压高于充电过流检测电压(V_{CIP})时,充电过流状态被解除,恢复到正常工作状态。

● 向0V电池充电功能(允许)

此功能用于对已经自放电到 0V 的电池进行再充电。当连接在 PB+和 PB-之间的充电器电压,高于"向 <math>0V 电池充电的充电器起始电压(V_{0CH})"时,充电控制用 MOSFET 的门极固定为 VDD 端子的电位,由

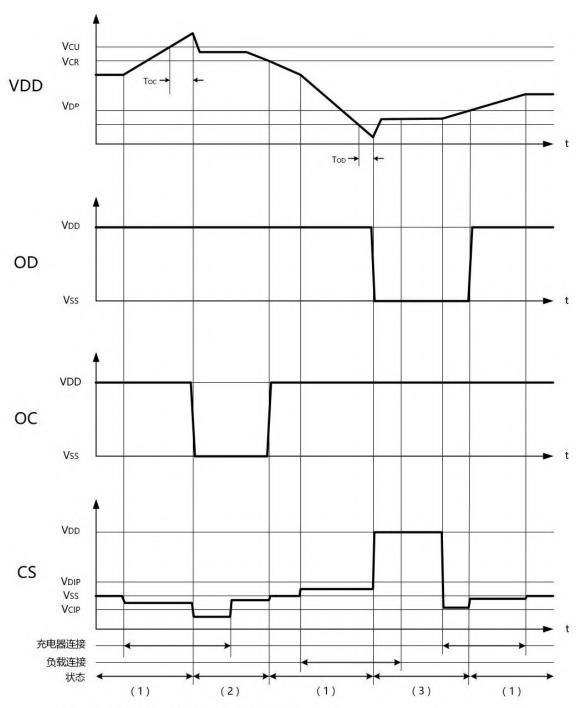
于充电器电压使 MOSFET 的门极和源极之间的电压 差高于其导通电压,充电控制用 MOSFET 导通(OC 端子),开始充电。这时,放电控制用 MOSFET 仍 然是关断的,充电电流通过其内部寄生二极管流过。 当 电池 电压 高于 过 放 电 检 测 电压 (V_{DL}) 时, ZLB4219AE进入正常工作状态。


注意:

- (1)某些完全自放电后的电池,不允许被再次充电,这是由锂电池的特性决定的。请询问电池供应商,确认所购买的电池是否具备"允许向 0V 电池充电"的功能。
- (2) "允许向 0V 电池充电功能"比"充电过流检测功能"优先级更高。因此,使用"允许向 0V 电池充电"功能的 IC,在电池电压较低的时候会强制充电。电池电压低于过放电检测电压(V_{DL})以下时,不能进行充电过流状态的检测。

时序图

过充电检测,过放电检测


说明:(1)正常工作状态,(2)过充电状态,(3)过放电状态

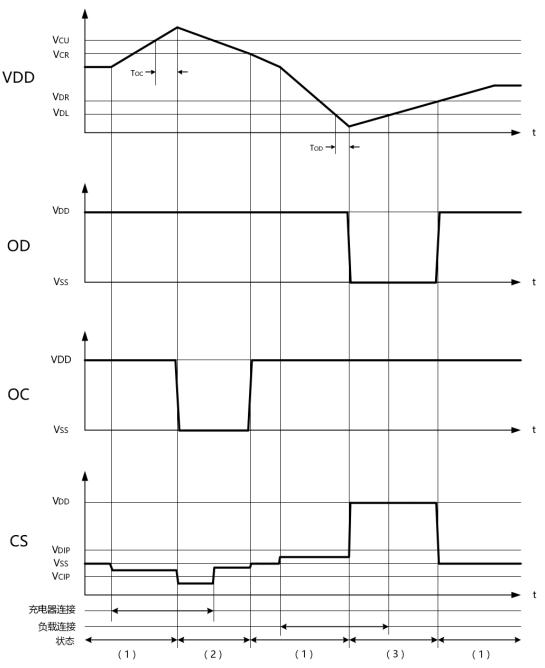
说明:

- (a) 过充释放条件: VCS>VDIP & VDD<VCU。
- (b) 过放释放条件: V_{CS}<V_{CIP} & V_{DD}>V_{DL}。

过充电检测,过放电检测

说明:(1)正常工作状态,(2)过充电状态,(3)过放电状态

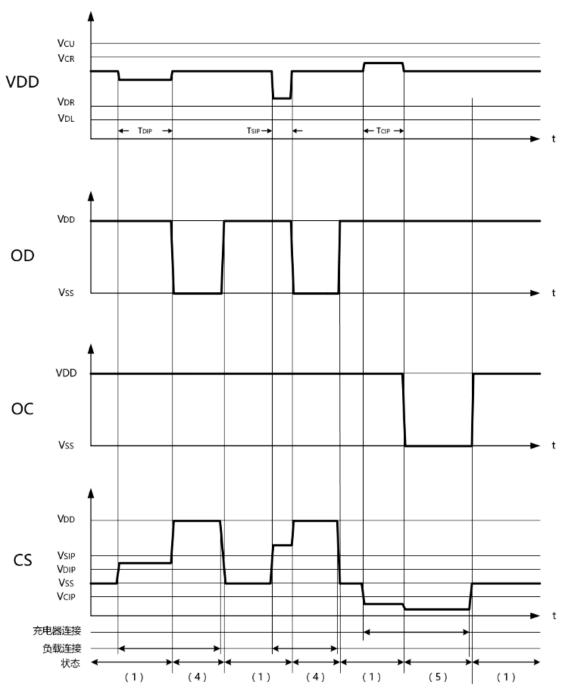
说明:


(a) 过充释放条件: V_{CIP}<V_{CS}<V_{DIP} & V_{DD}<V_{CR}。

Version: 1.0 2017-10

(b) 过放释放条件: V_{CS}>V_{CIP} & V_{DD}>V_{DR}。

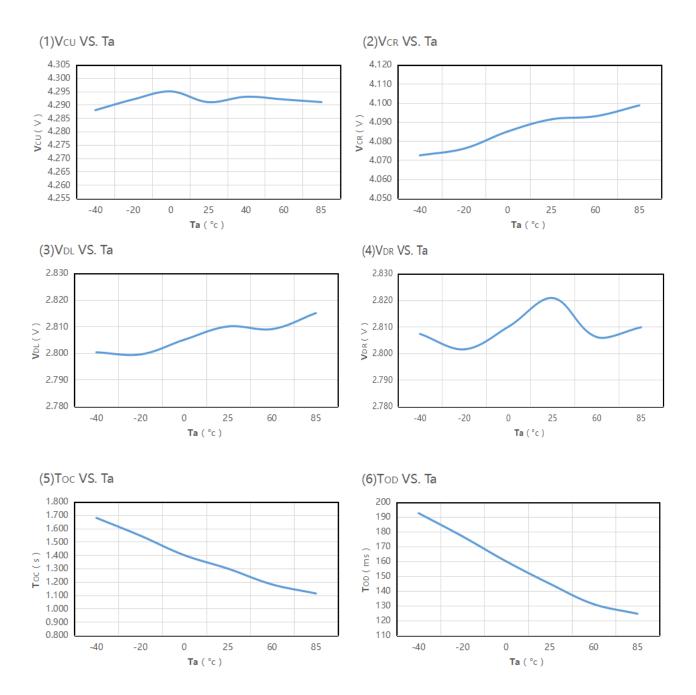
过充电检测,过放电检测(有过放自恢复功能)


说明:(1)正常工作状态,(2)过充电状态,(3)过放电状态

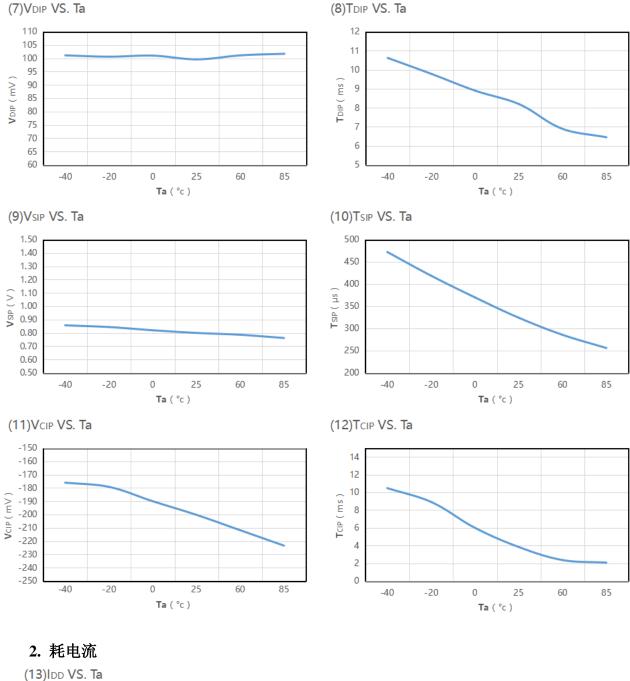
说明:

- (a) 过充释放条件: VCIP<VCS<VDIP & VDD<VCR。
- (b) 过放释放条件: V_{DD}>V_{DR}。

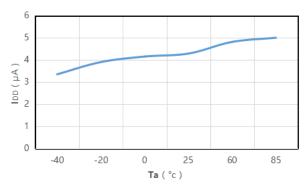
放电过流检测, 负载短路检测, 充电过流检测

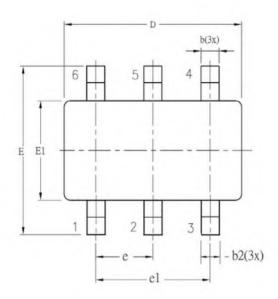


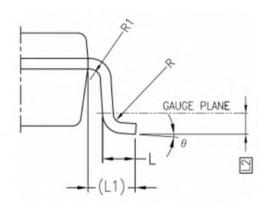
说明:(1)正常工作状态,(4)放电过流状态(放电过流及负载短路),(5)充电过流状态



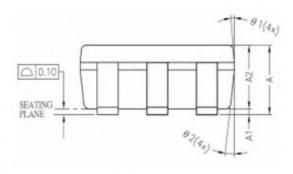
特性 (典型数据)

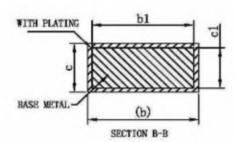

1. 过充电检测电压/过充电释放电压,过放电检测电压/过放电释放电压,放电过流检测电压/负载短路检测电压,充电过流检测电压以及各延迟时间。


Version: 1.0 2017-10



封装信息




SOT-23-6 (单位: mm)

SYM	ALL DIMENSIONS IN MILLIMETERS					
BUL	MINIMUM	NOMINAL	MAXIMUM			
Α	-	1.30	1.40			
A1	0	-	0.15			
A2	0.90	1.20	1.30			
b	0.30	-	0.50			
b1	0.30	0.40	0.45			
b2	0.30	0.40	0.50			
C	0.08	-	0.22			
c1	0.08	0.13	0.20			
D	107803.00	2.90 BSC				
E		2.80 BSC				
E1		1.60 BSC				
е		0.95 BSC				
e1		1.90 BSC				
L	0.30	0.45	0.60			
L1		0.60 REF				
L2	= 6 1 10000=	0.25 BSC				
R	0.10	-	-			
R1	0.10	-	0.25			
θ	0°	4°	8°			
01	5°	-	15°			
θ2	5°	-	15°			

