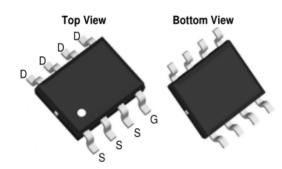


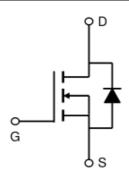
General Description

The ZLM0304BA combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\text{DS(ON)}}$. This device is for PWM applications.

Applications

- Power Management
- Portable Equipment
- Switching Power Supply


Product Summary


● V_{DS} 30V

● I_D (at V_{GS} =10V) 18A

• $R_{DS(ON)}$ (at $V_{GS} = 10V$) < $6.5 m\Omega$

• $R_{DS(ON)}$ (at V_{GS} =4.5V) < 9.5m Ω

Absolute MaximumRatings (T_A=25°Cunless otherwisenoted)

Parameter	A 4	Symbol	Maximum	Units	
Drain-Source Voltage		V _{DS}	30	V	
Gate-Source Voltage		V_{GS}	±20	V	
ContinuousDrain Current	T _A =25℃	I _D	18	^	
ContinuousDrain Current	T _A =70℃		14	— A	
PulsedDrainCurrent ^C	() /	I _{DM}	130	Α	
Power Dissipation ^B	T _A =25℃	P_D	3.1	— w	
Power Dissipation	T _A =70℃		2		
Storage Temperature Range	7	T _{STG}	-55 to +150	C	
Operating Junction Temperature Range		TJ	-55 to +150	C	
Thermal Resistance, Junction-to-Ambient	A	$R_{\theta JA}$	40	€W.	

www.zlw-ic.net

Electrical Characteristics (TJ=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS	•				
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250uA, V _{GS} =0V	30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =30V,V _{GS} =0V			1	uA
I _{GSS}	Gate-Bodyleakagecurrent	V _{DS} =0V,V _{GS} =±20V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} ,I _D =250uA	1		2.5	V
I _{D(ON)}	Onstate draincurrent	V _{GS} =10V,V _{DS} =5V	130			Α
	Statio Drain Course On Besistance	V _{GS} =10V,I _D =18A		5.4	6.5	mΩ
$R_{DS(ON)}$	StaticDrain-Source On-Resistance	V _{GS} =4.5V,I _D =16A		7.5	9	mΩ
g _{FS}	ForwardTransconductance	V _{DS} =5V,I _D =18A		70		S
V _{SD}	Diode Forward Voltage	I _{DS} =1A,V _{GS} =0V		0.75	1	V
Is	Maximum Body-Diode ContinuousCurrent				3	Α
DYNAMI	CPARAMETERS					
C _{iss}	InputCapacitance)/ 0)/)/ 45)/	1250	1590	1950	pF
C _{oss}	OutputCapacitance	→ V _{GS} =0V,V _{DS} =15V, → f=1MHz	160	240	320	pF
C _{rss}	Reverse TransferCapacitance	1- 11VII 12	90	145	210	pF
SWITCHI	NG PARAMETERS					
Qg	TotalGate Charge	V _{GS} =10V,V _{DS} =15V,	24	30	37	nC
Q_{gs}	Gate Source Charge		4	5.6	6.5	nC
Q_{gd}	Gate Drain Charge	A	4.5	7.8	11.2	nC
t _{D(on)}	Turn-OnDelayTime			6.7		ns
t _r	Turn-On Rise Time	V _{GS} =10V,V _{DS} =15V,	1	3.5		ns
t _{D(off)}	Turn-OffDelayTime	R_L =0.83 Ω , R_{GEN} =3 Ω		22.5		ns
t _f	Turn-OffFallTime			4		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =18A,dI/dt=500A/μs	20	28	35	ns
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =18A,dI/dt=500A/μs	18	24	30	nC

Notes:

A. The value of R $_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

- B. The power dissipation P D is based on $T_{J(MAX)}$ =150°C, using \leq 10s junction-to-ambient thermal resistance
- C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.
- D. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max
- E. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C. The SOA curve provides a single pulse rating.

www.zlw-ic.net 2/6

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

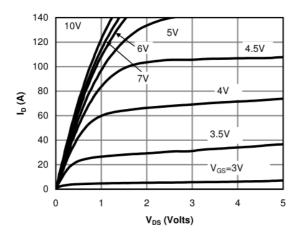


Fig 1: On-Region Characteristics (Note D)

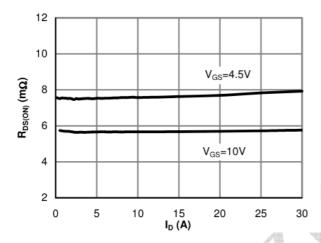


Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note D)

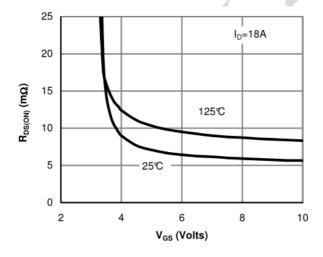


Figure 5: On-Resistance vs. Gate-Source Voltage (Note D)

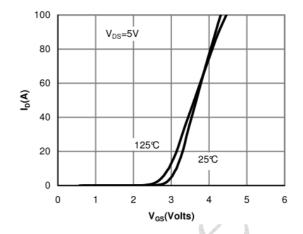


Figure 2: Transfer Characteristics (Note D)

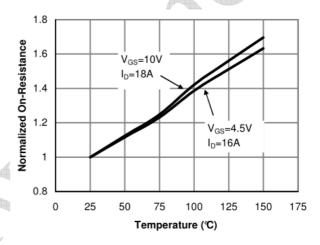


Figure 4: On-Resistance vs. Junction Temperature (Note D)

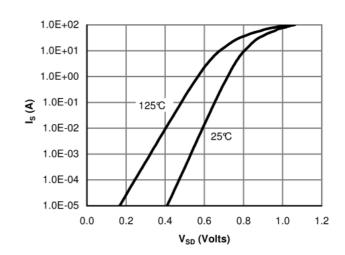


Figure 6: Body-Diode Characteristics (Note D)

www.zlw-ic.net 3/6

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

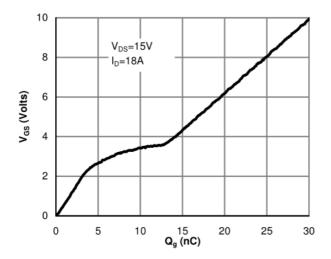
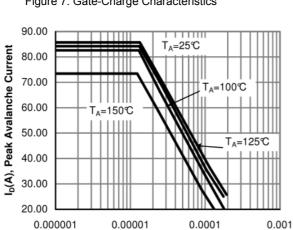



Figure 7: Gate-Charge Characteristics

Time in avalanche, t_A (s)

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

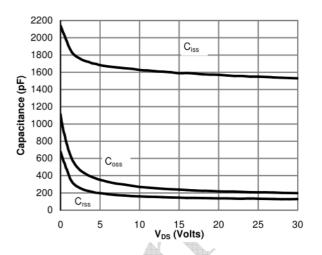


Figure 8: Capacitance Characteristics

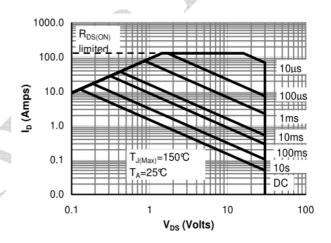
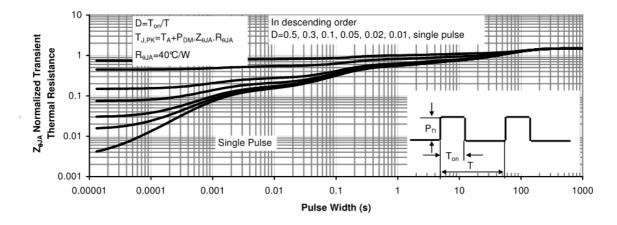
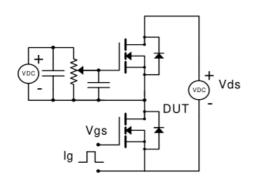
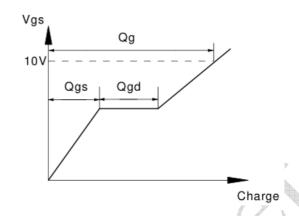
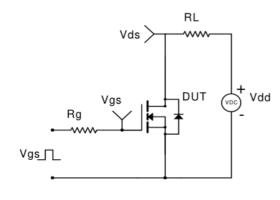


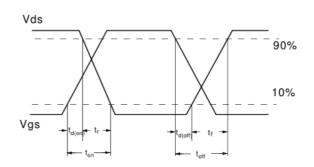
Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

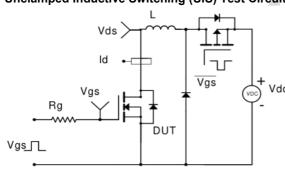



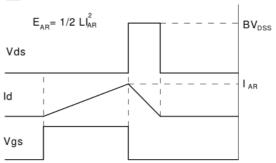

Figure 11: Normalized Maximum Transient Thermal Impedance (Note E)

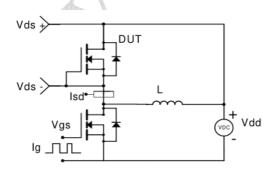
www.zlw-ic.net 4/6

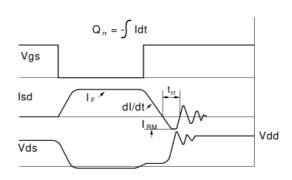



Gate Charge Test Circuit & Waveform

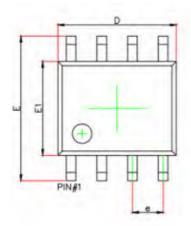


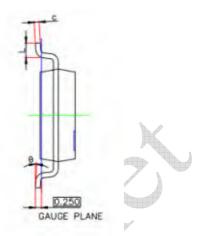

Resistive Switching Test Circuit & Waveforms

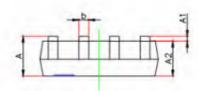



Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms




www.zlw-ic.net 5/6



Package Information

SOP-8

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
C	0.170	0.250	0.007	0.010	
D	4.800	5.000	0.189	0.197	
е	1.270 (BSC)		0.050 (BSC)		
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

www.zlw-ic.net 6/6