GeneralDescription The ZLM0305AC uses advanced trench technology to excellent $R_{DS(ON)}$, and ultra-low low gate charge. This device is suitable for use as a load switch or in PWM applications. # ◆ RoHS and Halogen-Free Compliant #### **Product Summary** $\begin{array}{l} V_{DS} \\ I_D(at\ V_{GS}\text{=-}10\text{V}) \\ R\ _{DS(ON)}(\ at\ V_{GS}\text{=-}10\text{V}) \\ R\ _{DS(ON)}(\ at\ V_{GS}\text{=-}4.5\text{V}) \end{array}$ -30V -8A <32mΩ <55m Ω | Absolute MaximumRatings (T _A =25℃unle | ess otherwisenoted) | | | | | |--|---------------------|-----------------|-------------|------|--| | Parameter | Symbol | Maximum | Units | | | | Drain-Source Voltage | | V_{DS} | -30 | V | | | Gate-Source Voltage | 4 | V_{GS} | ±20 | V | | | ContinuousDrain Current | T _A =25℃ | I_{D} | -8 | А | | | Continuous Drain Current | T _A =70℃ | | -6.6 | A | | | PulsedDrainCurrent ^C | | I _{DM} | -40 | Α | | | Power Dissipation ^B | T _A =25℃ | P_{D} | 3.1 | w | | | | T _A =70℃ | | 2 | 7 vv | | | Storage Temperature Range | | T_{STG} | -55 to +150 | C | | | Operating Junction Temperature Range | | T_J | -55 to +150 | C | | | Thermal Resistance, Junction-to-Ambient ^A | | $R_{\theta JA}$ | 75 | €/W | | 1/6 www.zlw-ic.net Electrical Characteristics (TJ=25°C unless otherwise noted) | Symbol | Parameter | Conditions | Min | Тур | Max | Units | |---------------------|--|---|------|-------|------|-------| | STATIC I | PARAMETERS | | • | • | • | • | | BV _{DSS} | Drain-Source Breakdown Voltage | I _D =-250uA, V _{GS} =0V | -30 | | | V | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} =-30V,V _{GS} =0V | | | -1 | uA | | I _{GSS} | Gate-Bodyleakagecurrent | V _{DS} =0V,V _{GS} =±20V | | | ±100 | nA | | V _{GS(th)} | Gate Threshold Voltage | V _{DS} =V _{GS} ,I _D =-250uA | -1.3 | | -2.4 | V | | I _{D(ON)} | Onstate draincurrent | V _{GS} =-10V,V _{DS} =-5V | -40 | | | Α | | P | R _{DS(ON)} StaticDrain-Source On-Resistance | V _{GS} =-10V,I _D =-6A | | 21 | 32 | mΩ | | R _{DS(ON)} | | V _{GS} =-4.5V,I _D =-4A | | 33 | 55 | mΩ | | g _{FS} | ForwardTransconductance | V _{DS} =-5V,I _D =-8A | | 19 | | S | | V _{SD} | Diode Forward Voltage | I _{DS} =-1A,V _{GS} =0V | | -0.8 | -1 | V | | Is | Maximum Body-Diode ContinuousCurrent 3.5 | | 3.5 | А | | | | DYNAMI | C PARAMETERS | | | | | | | C _{iss} | InputCapacitance | \/ -0\/\/ - 45\/ | | 740 | | pF | | C _{oss} | OutputCapacitance | V_{GS}=0V,V_{DS}=-15V,f=1MHz | | 130 | | pF | | C _{rss} | Reverse TransferCapacitance | 1-1101112 | | 92 | | pF | | SWITCH | NG PARAMETERS | | | J. A. | | | | Q_g | TotalGate Charge | V _{GS} =-10V,V _{DS} =-15V, | | 14 | | nC | | Q_{gs} | Gate Source Charge | I _D =-8A | | 2.8 | | nC | | Q_{gd} | Gate Drain Charge | _ | | 3.5 | | nC | | t _{D(on)} | Turn-OnDelayTime | V _{GS} =-10V,V _{DS} =-15V, | | 8 | | ns | | t _r | Turn-On Rise Time | R_L =1.8 Ω , R_{GEN} =3 Ω | | 6 | | ns | | t _{D(off)} | Turn-OffDelayTime | | | 17 | | ns | | t _f | Turn-OffFallTime | AAI | | 5 | | ns | | t _{rr} | Body Diode Reverse Recovery Time | I _F =-8A,dI/dt=500A/μs | | 15 | | ns | | Q _{rr} | Body Diode Reverse Recovery Charge | I _F =-8A,dI/dt=500A/μs | | 9.7 | | nC | #### Notes: A. is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R θ JC is guaranteed by design while $R_{\theta CA}$ is determined by theuser's board design. $R_{\theta JA}$ shown below for single device operation on FR-4 in still air. - B.The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using \leq 10s junction-to-ambient thermal resistance. - C.Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. Ratings are based on low frequency and duty cycles to keep initialTJ=25°C. - D.The static characteristics in Figures 1 to 6 are obtained using <300us pulses, duty cycle 0.5% max. - E.These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C. The SOA curve provides a single pulse rating. www.zlw-ic.net 2/6 #### TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS Fig 1: On-Region Characteristics (Note D) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note D) Figure 5: On-Resistance vs. Gate-Source Voltage (Note D) Figure 2: Transfer Characteristics (Note D) Figure 4: On-Resistance vs. Junction Temperature (Note D) Figure 6: Body-Diode Characteristics (Note D) www.zlw-ic.net 3/6 #### TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS Figure 7: Gate-Charge Characteristics Figure 8: Capacitance Characteristics Figure 9: Maximum Forward Biased Safe Operating Area (Note E) Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E) Figure 11: Normalized Maximum Transient Thermal Impedance (Note E) www.zlw-ic.net 4/6 #### **Gate Charge Test Circuit & Waveform** #### **Resistive Switching Test Circuit & Waveforms** ## Unclamped Inductive Switching (UIS) Test Circuit & Waveforms ## **Diode Recovery Test Circuit & Waveforms** www.zlw-ic.net 5/6 # Package Information SOT23-3L | Symbol | Dimensions In Millimeters | | Dimensions In Inches | | | |--------|---------------------------|-------|----------------------|-------|--| | | Min | Max | Min | Max | | | Α | 1.050 | 1.250 | 0.041 | 0.049 | | | A1 | 0.000 | 0.100 | 0.000 | 0.004 | | | A2 | 1.050 | 1.150 | 0.041 | 0.045 | | | b | 0.300 | 0.500 | 0.012 | 0.020 | | | C | 0.100 | 0.200 | 0.004 | 0.008 | | | D | 2.820 | 3.020 | 0.111 | 0.119 | | | E | 1.500 | 1.700 | 0.059 | 0.067 | | | E1 | 2.650 | 2.950 | 0.104 | 0.116 | | | е | 0.950(BSC) | | 0.037(| (BSC) | | | e1 | 1.800 | 2.000 | 0.071 | 0.079 | | | L | 0.300 | 0.600 | 0.012 | 0.024 | | | θ | 0° | 8° | 0° | 8° | | www.zlw-ic.net 6/6