
GeneralDescription

The ZLM0315BA combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\text{DS}(\text{ON})}.$ This device is ideal for load switch and battery protection applications.

◆ RoHS and Halogen-Free Compliant

Product Summary

 $\begin{array}{lll} V_{DS} & -30V \\ I_{D}(at \ V_{GS} \!\!=\!\! -10V) & -9A \\ R_{\ DS(ON)}(\ at \ V_{GS} \!\!=\!\! -10V) & <20m\Omega \\ R_{\ DS(ON)}(\ at \ V_{GS} \!\!=\!\! -4.5V) & <36m\Omega \end{array}$

Absolute MaximumRatings (TA=25	Cuniess otherwisenot	ea)			
Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V _{DS}	-30	V	
Gate-Source Voltage		V_{GS}	±20	V	
ContinuousDrain Current	T _A =25℃		-9	^	
Continuous Drain Current	T _A =70℃	ID	-7.5	A	
PulsedDrainCurrent ^C	A A	I _{DM}	-70	Α	
Power Dissipation ^B	T _A =25℃	0	3.1	W	
Power Dissipation	T _A =70℃	P _D	2		
Storage Temperature Range		T _{STG}	-55 to +150	${\mathbb C}$	
Operating Junction Temperature Range		TJ	-55 to +150	${\mathfrak C}$	
Thermal Resistance, Junction-to-Ambient A	4 1 3	R _{0JA}	40	.cw	

www.zlw-ic.net 1/6

Electrical Characteristics (TJ=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS		•	•	•	
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =-250uA, V _{GS} =0V	-30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-30V,V _{GS} =0V			-1	uA
I _{GSS}	Gate-Bodyleakagecurrent	V _{DS} =0V,V _{GS} =±20V			±100	nA
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =V _{GS} ,I _D =-250uA	-1.5		-2.5	V
I _{D(ON)}	Onstate draincurrent	V _{GS} =-10V,V _{DS} =-5V	-70			Α
R _{DS(ON)} StaticDrain-Source On-Resistance	Statio Drain Course On Begintanes	V _{GS} =-10V,I _D =-6A		17	20	mΩ
	StaticDrain-Source On-Resistance	V _{GS} =-4.5V,I _D =-5A		26	32	mΩ
g _{FS}	ForwardTransconductance	V_{DS} =-5 V , I_{D} =-9 A		27		S
V _{SD}	Diode Forward Voltage	I _{DS} =-1A,V _{GS} =0V		-0.75	-1	V
Is	Maximum Body-Diode ContinuousCurrent			A	-3.5	А
DYNAMIC	CPARAMETERS		•	A		
C _{iss}	InputCapacitance	\/ -0\/\/ - 45\/		1020		pF
C _{oss}	OutputCapacitance	V _{GS} =0V,V _{DS} =-15V, f=1MHz		170		pF
C _{rss}	Reverse TransferCapacitance	T I IIVINZ		112		pF
SWITCHI	NG PARAMETERS					
Qg	TotalGate Charge	V _{GS} =-10V,V _{DS} =-15V,		20		nC
Q _{gs}	Gate Source Charge	I _D =-9A		3.5		nC
Q_{gd}	Gate Drain Charge			4.2		nC
t _{D(on)}	Turn-OnDelayTime	V _{GS} =-10V,V _{DS} =-15V,		13		ns
t _r	Turn-On Rise Time	R_L =1.5 Ω , R_{GEN} =3 Ω		7.5		ns
t _{D(off)}	Turn-OffDelayTime			28		ns
t _f	Turn-OffFallTime			9		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-9A,dI/dt=100A/μs		13		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-9A,dI/dt=100A/μs		25		nC

Notes:

A. is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R θ JC is guaranteed by design while $R_{\theta CA}$ is determined by theuser's board design. $R_{\theta JA}$ shown below for single device operation on FR-4 in still air.

- B.The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using \leq 10s junction-to-ambient thermal resistance.
- C.Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. Ratings are based on low frequency and duty cycles to keep initialTJ=25°C.
- D.The static characteristics in Figures 1 to 6 are obtained using <300us pulses, duty cycle 0.5% max.
- E.These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C. The SOA curve provides a single pulse rating.

www.zlw-ic.net 2/6

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

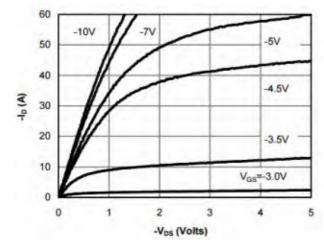


Fig 1: On-Region Characteristics (Note D)

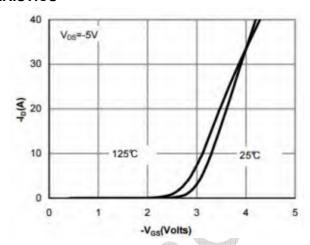


Figure 2: Transfer Characteristics (Note D)

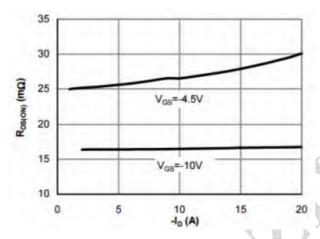


Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note D)

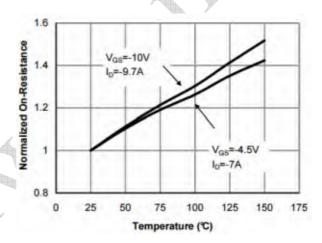


Figure 4: On-Resistance vs. Junction Temperature (Note D)

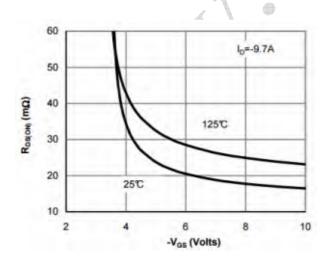


Figure 5: On-Resistance vs. Gate-Source Voltage (Note D)

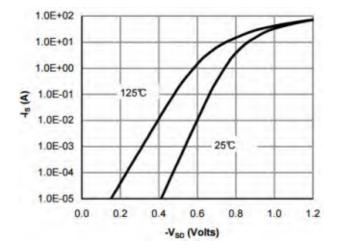
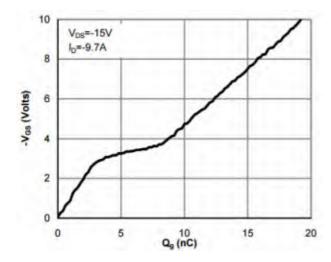



Figure 6: Body-Diode Characteristics (Note D)

www.zlw-ic.net 3/6

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

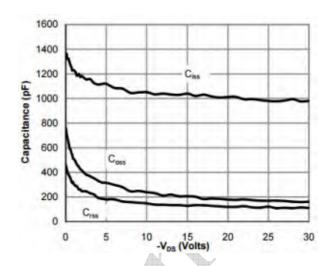


Figure 8: Capacitance Characteristics

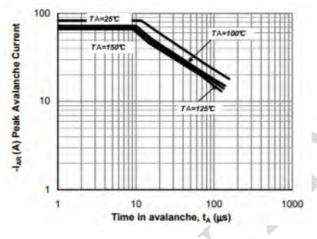


Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

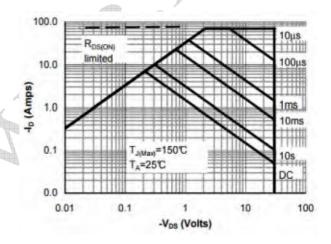


Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

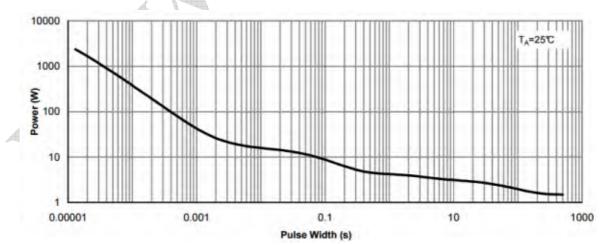
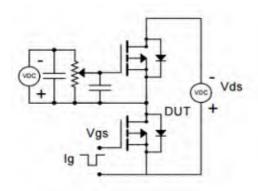
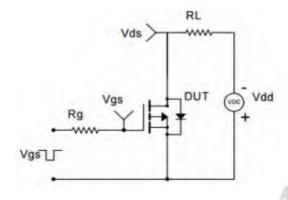
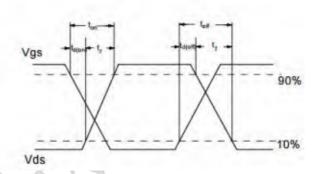
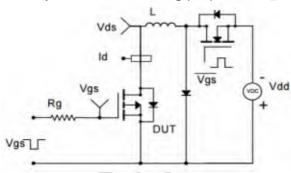



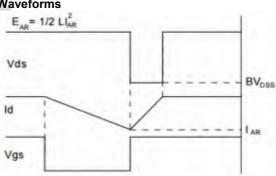
Figure 11: Normalized Maximum Transient Thermal Impedance (Note E)

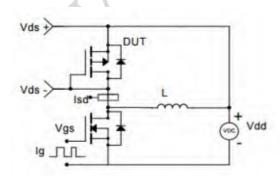
www.zlw-ic.net 4/6

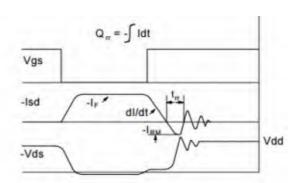



Gate Charge Test Circuit & Waveform

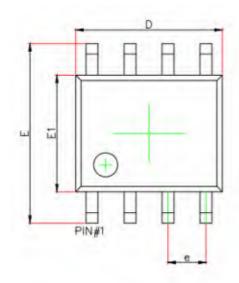


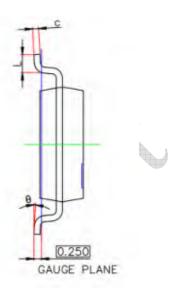

Resistive Switching Test Circuit & Waveforms

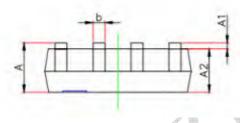



Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms




www.zlw-ic.net 5/6



Package Information

SOP-8

Cumbal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.800	5.000	0.189	0.197	
е	1.270	(BSC)	0.050	(BSC)	
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

www.zlw-ic.net 6/6