

General Description

The ZLM0402BA uses advanced trench technology to provide excellent $R_{DS(ON)}$ with low gate charge. This is an all purpose device that is suitable for use in a wide range of power conversion applications.

Applications

- Power Management
- Portable Equipment
- Switching Power Supply

Product Summary

● V_{DS} 40V

● I_D (at V_{GS} =10V) 10A

• $R_{DS(ON)}$ (at $V_{GS} = 10V$) < $10m\Omega$

• $R_{DS(ON)}$ (at V_{GS} =4.5V) < $12m\Omega$

Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V_{DS}	40	V	
Gate-Source Voltage		V_{GS}	±20	V	
ContinuousDrain Current	T _A =25℃	I _D	10	^	
Continuous Drain Current	T _A =70℃	_	8	A	
PulsedDrainCurrent ^C		I _{DM}	100	Α	
Davier DissinationB	T _A =25℃	P _D	1.7	w	
Power Dissipation ^B	T _A =70℃		1.1		
Storage Temperature Range		T _{STG}	-55 to +150	C	
Operating Junction Temperature Range		TJ	-55 to +150	C	
Thermal Resistance, Junction-to-Ambient A		$R_{\theta JA}$	40	€/W	

www.zlw-ic.net 1/6

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS		•			
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250uA, V _{GS} =0V	40			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =40V,V _{GS} =0V			1	uA
I _{GSS}	Gate-Bodyleakagecurrent	V _{DS} =0V,V _{GS} =±20V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_D=250$ uA	1.7	2.2	3	V
I _{D(ON)}	Onstate draincurrent	V _{GS} =10V,V _{DS} =5V	120			Α
P	S(ON) StaticDrain-Source On-Resistance	V _{GS} =10V,I _D =10A		8.2	10	mΩ
N _{DS(ON)} Sta		V _{GS} =4.5V,I _D =8A		10	12	mΩ
g _{FS}	ForwardTransconductance	V _{DS} =5V,I _D =10A		75		S
V _{SD}	Diode Forward Voltage	I _{DS} =1A,V _{GS} =0V		0.72	1	V.
Is	Maximum Body-Diode ContinuousCurre	ent			2.5	A
DYNAMI	C PARAMETERS		•	•	K	
C _{iss}	InputCapacitance	V _{GS} =0V,V _{DS} =15V, f=1MHz		1500		pF
C _{oss}	OutputCapacitance			215		pF
C _{rss}	Reverse TransferCapacitance	1-11/11/12		135		pF
SWITCHI	NG PARAMETERS)		
Q_g	TotalGate Charge	V _{GS} =10V,V _{DS} =15V,		27.2		nC
Q_{gs}	Gate Source Charge	I _D =10A		4.5		nC
Q_{gd}	Gate Drain Charge	A		6.4		nC
t _{D(on)}	Turn-OnDelayTime			6.4		ns
t _r	Turn-On Rise Time	V _{GS} =10V,V _{DS} =20V,	Jan 1997	17.2		ns
t _{D(off)}	Turn-OffDelayTime	$R_L=2\Omega,R_{GEN}=3\Omega$		29.6		ns
t _f	Turn-OffFallTime			16.8		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =10A,dI/dt=500A/µs		30		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =10A,dI/dt=500A/µs		19		nC

Notes:

- A. The value of R $_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.
- B. The power dissipation P D is based on $T_{J(MAX)}$ =150°C, using \leq 10s junction-to-ambient thermal resistance
- C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.
- D. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max
- E. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C. The SOA curve provides a single pulse rating.

www.zlw-ic.net 2/6

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Fig 1: On-Region Characteristics (Note D)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note D)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note D)

Figure 2: Transfer Characteristics (Note D)

Figure 4: On-Resistance vs. Junction Temperature (Note D)

Figure 6: Body-Diode Characteristics (Note D)

www.zlw-ic.net 3/6

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note E)

www.zlw-ic.net 4/6

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

www.zlw-ic.net 5/6

Package Information

SOP-8

Symbol	Dimensions I	n Millimeters	Dimensions In Inc		
	Min.	Max.	Min.	Max.	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.800	5.000	0.189	0.197	
е	1.270 (BSC)		0.050 (BSC)		
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

www.zlw-ic.net 6/6