

General Description

The ZLM0360BA uses advanced trench technology to provide excellent $R_{\text{DS}(\text{ON})}$ and low gate charge. The two MOSFETs make a compact and efficient switch and synchronous rectifier combination for use in buck converters.

Applications

- Power Management in Note book
- Portable Equipment
- Battery Powered System
- DC/DC Converter
- wireless charging
- LCD Display inverter

Product Summary

V_{DS} 30V

 I_D (at $V_{GS} = 10V$)

6A

 $R_{DS(ON)}$ (at $V_{GS} = 10V$)

< 30mΩ

 $R_{DS(ON)}$ (at $V_{GS} = 4.5V$) < 42mΩ

Absolute MaximumRatings (TA=25℃unless otherwisenoted) Parameter Symbol Maximum Units Drain-Source Voltage VDS V 30 Gate-Source Voltage Vgs ±20 ٧ TA=25℃ 6 ContinuousDrain Current Α I_{D} TA=70℃ 5 PulsedDrainCurrent^C IDM 30 Α 2 TA=25℃ Power Dissipation^B PDW 1.3 TA=70℃ Storage Temperature Range -55 to +150 ${\mathfrak C}$ T_{STG} ${\mathfrak C}$ Operating Junction Temperature Range -55 to +150 Thermal Resistance, Junction-to-Ambient A $R_{\theta JA}$ 62.5 **℃**/W

www.zlw-ic.net 1/6

Electrical Characteristics (TJ=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
STATIC PARAMETERS								
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250uA, V _{GS} =0V	30			V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =30V,V _{GS} =0V			1	uA		
I _{GSS}	Gate-Bodyleakagecurrent	V _{DS} =0V,V _{GS} =±20V			±100	nA		
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} ,I _D =250uA	1.2		2.4	V		
I _{D(ON)}	Onstate draincurrent	V _{GS} =10V,V _{DS} =5V	30			Α		
R _{DS(ON)}	StaticDrain-Source On-Resistance	V _{GS} =10V,I _D =5A		25	30	mΩ		
		V _{GS} =4.5V,I _D =3A		33	42	mΩ		
g _{FS}	ForwardTransconductance	V_{DS} =5 V , I_{D} =6 A		15	Į.	S		
V_{SD}	Diode Forward Voltage	I _{DS} =1A,V _{GS} =0V		0.75	1	V		
Is	Maximum Body-Diode ContinuousCurrent				2.5	Α		
DYNAMIC PARAMETERS								
C _{iss}	InputCapacitance	\\ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		255		pF		
C _{oss}	OutputCapacitance	→ V _{GS} =0V,V _{DS} =15V, → f=1MHz		40		pF		
C _{rss}	Reverse TransferCapacitance			32		pF		
SWITCHING PARAMETERS								
Q_g	TotalGate Charge	V _{GS} =10V,V _{DS} =15V,		5.1		nC		
Q_{gs}	Gate Source Charge	I _D =6A		0.8		nC		
Q_{gd}	Gate Drain Charge			1.3		nC		
$t_{D(on)}$	Turn-OnDelayTime	V _{GS} =10V,V _{DS} =15V,)III	4.5		ns		
t _r	Turn-On Rise Time	R_L =2.5 Ω , R_{GEN} =3 Ω		2.5		ns		
$t_{D(off)}$	Turn-OffDelayTime			14		ns		
t _f	Turn-OffFallTime			3.5		ns		
t _{rr}	Body Diode Reverse Recovery Time	I _F =6A,dI/dt=100A/μs		9		ns		
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =6A,dI/dt=100A/μs		2.5		nC		

Notes:

- A. The value of R $_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.
- B. The power dissipation P D is based on T_{J(MAX)} =150°C, using ≤ 10s junction-to-ambient thermal resistance
- C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.
- D. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max
- E. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C. The SOA curve provides a single pulse rating.

www.zlw-ic.net 2/6

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Fig 1: On-Region Characteristics (Note D)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note D)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note D)

Figure 2: Transfer Characteristics (Note D)

Figure 4: On-Resistance vs. Junction Temperature (Note D)

Figure 6: Body-Diode Characteristics (Note D)

www.zlw-ic.net 3/6

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note E)

www.zlw-ic.net 4/6

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

www.zlw-ic.net 5/6

Package Information

SOP-8

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.800	5.000	0.189	0.197	
е	1.270 (BSC)		0.050 (BSC)		
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

www.zlw-ic.net 6/6